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1 Informal introduction

Many physical phenomena can be modeled as stochastic processes that satisfy certain equations
involving random terms or coefficients. One example of such an equation is

dXt

dt
= b(Xt)+�(Xt)�t;

where (�t)t>0 is a certain collection of random variables (a stochastic process) called the white
noise and b; � are deterministic functions. Imagine that Xt is the price of an asset at time t. The
first term on the RHS of the above equation models intrinsic predictable trends of price change.
The second term represents unpredictable changes of price due to influences of some random events.
It is natural to assume that these events are independent . We would like to define the white noise
(�t)t2R as a collection of Gaussian random variables such that their mean vanishes, �s and �t are
independent whenever s=/ t and

R
0

t
�s ds=/ 0 for t> 0. Unfortunately, one shows that there is no

collection (�t)t2R satisfying the above conditions. Nevertheless, it is possible to give meaning to
equations like (1). The idea is to first construct a stochastic process (Bt)t>0 that, at least formally ,
solves the equation

dBt

dt
= �t:

We call such a process (Bt)t>0 a Brownian motion. As we will see, (Bt)t>0 is very irregular as a
function of time and, in particular, is not differentiable. In order to make sense of (1) we rewrite it as

dXt= b(Xt) dt+�(Xt)dBt:

We say that (Xt)t>0 is a solution of the above stochastic differential equation if

Xt=X0+
Z
0

t

b(Xs)ds+
Z
0

t

�(Xs) dBs:

The last equation above is meaningful provided we can define an integralZ
0

T

Ys dBs

of a sufficiently generic stochastic process (Yt)t>0 with respect to a Brownian motion (Bt)t>0. We
call the above integral the stochastic integral. Because of very irregular nature of Brownian
motion the construction of the stochastic integral is quite nontrivial and will be one of the subjects
of this course.

Content of the course:

� Brownian motion and martingales.

� Construction of the stochastic integral and its properties.

� Stochastic differential equations.

� Link between partial differential equations and stochastic processes.

2 Some elements of probability theory

Definition 2.1. A triple (
;F ;P) is called a probability space provided 
 is a nonempty set,
F is a �-algebra of subsets of 
, and P :F! [0; 1] is a probability measure. A set E 2F is called
an event, a point ! 2
 is called a sample point and P(E) is the probability of the event E.
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The smallest �-algebra containing all the open subsets of Rd is called the Borel �-algebra.
Note that elements of this algebra, called Borel sets, can be formed from open sets through the
operations of countable union, countable intersection, and relative complement.

Definition 2.2. Let (
;F ;P) be a probability space.

� A map X : 
!Rd is called a random variable if X¡1(B)2F for all Borel sets B�Rd.

� We write P(X 2B) for P(X¡1(B)), that is, the probability that X takes values in B.

� We call E(X) :=
R


X(!)P(d!) the expected value of X:

� Random variables X1; : : : ; Xn are independent if

P(X12B1; : : : ; Xn2Bn)=P(X12B1): : :P(Xn2Bn)

for all Borel sets B1; : : : ; Bn.

� A collection (Xt )t2I of random variables indexed by elements of some set I is called a
stochastic process. For each sample point !2
 the map t 7!Xt(!) is the corresponding
sample path.

� We say that a process (Xt )t2I is continuous (resp. a.s. continuous) if its sample paths
are continuous (resp. a.s. continuous), that is the map t 7!Xt(!) is continuous for all
(resp. almost all) ! 2
.

We say that a random variable X: 
!R has Gaussian (or normal) distribution with mean m

and variance �2, and write X is N (m;�2), if

P(X <a)=
Z
¡1

a

f(x) dx; f(x)� p(x;m;�2) := 1
2��2
p exp

�
¡jx¡mj

2

2�2

�
:

The map a 7!P(X < a) is called the distribution function of a random variable X and the
function f related to P(X <a) by the formula above is called the density function of X (note
that not every random variable has a density).

3 Definition of Brownian motion and basic properties

Definition 3.1. Let (
;F ; P) be a probability space. A stochastic process (Bt )t>0 is called a
Brownian motion (or a Wiener process) if it has the following properties:

(i). B0=0 a.s.

(ii). The increments of (Bt )t>0 are independent, that is, for every finite set of times 06 t1<
t2< � � �<tn<1 the random variables

Bt2¡Bt1; Bt3¡Bt2; : : : ; Btn¡Btn¡1

are independent.

(iii). For any 06 s< t<1 the increment Bt¡Bs is N (0; t¡ s).

(iv). (Bt )t>0 is a.s. continuous.
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Remark 3.2. A Brownian motion with initial point x is a stochastic process (Bt )t>0 such that
B0=x a.s. and the conditions (ii)-(iv) introduced above are satisfied.

Remark 3.3. One of the many reasons that Brownian motion is important in probability theory
is that it can be obtained as the continuous-time limit of a simple symmetric random walk when
the step size and time step shrink appropriately. A simple symmetric random walk starts
at zero and at each step moves +1 or ¡1 with equal probability. More precisely, it is a discrete
stochastic process (Sn)n2N0 defined by the conditions and

S0=0; Sn=
X
i=1

n

Xi; n2N+;

where X1; X2; X3; : : : are i.i.d. random variables taking values +1 or ¡1 with equal probability.
Let "> 0 and define

Bt
(") := "St/"2; t2f0; "2; 2"2; : : :g:

Note that Bt
(") describes a walk that starts at zero and at each time t2f0; "2; 2"2; : : : g moves +"

or ¡" with equal probability. By the central limit theorem we know that the distribution of Sn

n
p

converges to N (0; 1) as n!1. Hence, the distribution of

Bt
(")= t

p St/"2

t/"2
p

converges to N (0; t) as "& 0. Since increments of Bt
(") are independent, this suggest that the

process
¡
Bt
(")�

t>0 (obtained from
¡
Bt
(")�

t2f0;"2;2"2; : : :g by linear interpolation) should converge to
a Brownian motion.

Remark 3.4. The history of the Brownian motion began in 1827 when a botanistRobert Brown
looked through a microscope at pollen grains suspended in water and discovered the pollen was
moving in a random fashion. He noted that the path of a given particle is very irregular and the
motions of two distinct particles appear to be independent. It wasn't until later that scientists
realized the true cause of this motion was not biological, but rather physical. The motion was due
to the random collisions between the pollen particles and the much smaller water molecules, which
were in constant, chaotic motion. This phenomenon, now known as Brownian motion, is a type
of random movement that is a key concept in both physics and mathematics. In 1905 Albert
Einstein provided a mathematical explanation of Brownian motion. He suggested that the random
movement of particles was a result of thermal fluctuations at the molecular level, leading to what we
now call diffusion. In 1900 the French mathematician Louis Bachelier applied a random process
model to describe stock prices, which shares similarities with the randomness seen in Brownian
motion. A rigorous construction of Brownian motion was given by Norbert Wiener in 1923.

Definition 3.5. If a stochastic process (Xt )t>0 has the property that for every 06t1<t2< :: : <

tn<1 the vector (Xt1; : : : ;Xtn) has a multivariate Gaussian distribution, then (Xt )t>0 is called
a Gaussian process.
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Lemma 3.6. A process (Bt )t>0 is a Brownian motion iff it is Gaussian, a.s. continuous and
for all s; t> 0 it holds that

EBt=0; E(BsBt)= s^ t:

Notation 3.7. We set s^ t :=min (s; t) and s_ t :=max (s; t).

Proof. Suppose that (Bt )t>0 is a Brownian motion. Then for every 06t1<t2< : : : < tn<1 the
vector

(Bt1; Bt2¡Bt1; Bt3¡Bt2; : : : ; Btn¡Btn¡1) (3.1)

has a multivariate Gaussian distribution. It follows that (Bt1; : : : ; Btn) also has a multivariate
Gaussian distribution. In consequence, (Bt)t>0 is Gaussian. It is evident that EBt=0: Suppose
that s<t. Since Bs and Bt¡Bs are independent, we have E(Bs(Bt¡Bs))=E(Bs)E(Bt¡Bs)=0.
As a result, E(BtBs)=E(Bs2)+E(Bs(Bt¡Bs))= s. This proves that E(BtBs)= t^ s.

Now let us prove the reverse implication. We have to show that (Bt)t>0 satisfies the conditions
(i)-(iii) stated in Def. 3.1 (the condition (iv) is satisfied by assumption). Since E(B02)= 0, B0=0
a.s. and (i) holds true. To prove (ii) we have to demonstrate that the vector (3.1) has a diag-
onal covariance matrix. To confirm the vanishing of the off-diagonal terms we use EBt= 0 and
E(BsBt)= s^ t to show that for i < j it holds that

Cov(Bti¡Bti¡1; Btj¡Btj¡1) =E((Bti¡Bti¡1)(Btj¡Btj¡1))
=E(BtiBtj)¡E(BtiBtj¡1)¡E(Bti¡1Btj)+E(Bti¡1Btj¡1)
=ti¡ ti¡ ti¡1+ ti¡1=0:

By a similar computation we obtain E(Bt¡Bs)2= t¡ s. Since E(Bt¡Bs)= 0, we conclude that
Bt¡Bs is N(0; t¡s). Hence, the condition (iii) is satisfied. This finishes the proof of the lemma. �

Lemma 3.8. Let (Bt)t>0 be a Brownian motion.

(i). (Invariance under translations in time). Let a>0. The process (Xt )t>0=(Bt+a¡Ba )t>0
is a Brownian motion.

(ii). (Scaling property). Let a> 0. The process (Yt )t>0=
¡ 1
a
Ba2t

�
t>0 is a Brownian motion.

(iii). (Time inversion). Let Z0= 0 and Zt= tB1/t for t > 0. Then the process (Zt )t>0 is a
Brownian motion.

Proof. We use the characterization of Brownian motion given in Lemma 3.6. It is evident that
all of the processes defined in the statement are Gaussian with mean zero. A simple computation
using EBsBt=s^ t shows that EXsXt=s^ t, EYsYt=s^ t and EZsZt=s^ t. For example, we have

EZsZt= stE(B1/sB1/t)= st (1/s^ 1/t)= s^ t:

This shows that the covariance condition stated in Lemma 3.6 is fulfilled. It is also clear that
(Xt )t>0 and (Yt )t>0 are a.s. continuous and (Zt )t>0 is a.s. continuous away from zero.
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To complete the proof of the lemma it remains to establish the continuity of (Zt )t>0 at zero. To
this end, consider two events

A=
\

m2N+

[
n2N+

\
k2N+

�
jBtn;kj6

1
m

�
=
n
lim
t&0

Bt=0
o
;

B=
\

m2N+

[
n2N+

\
k2N+

�
jZtn;kj6

1
m

�
=
n
lim
t&0

Zt=0
o
:

Here for every n2N+, (tn;k)k2N+ is a arbitrarily fixed sequence of all elements of Q\ (0; 1/n),
where Q is the set of rational numbers. We used above the fact that if f : [0;1)!R is continuous
away from the origin, then limt&0 f(t)= 0 iff

8m2N+9n2N+8t2Q\(0;1/n)jf(t)j6
1
m

, 8m2N+9n2N+8k2N+jf(tn;k)j6
1
m
:

Since for all 06t1< t2< : : : < tn<1 the vectors (Bt1; : : : ; Btn) and (Zt1; : : : ; Ztn) have the same
distribution (both vectors have Gaussian distribution with mean zero and the same covariance),
by the continuity of the probability measure from below and above we conclude that the events A
and B have the same probability. Since P(A) = 1 by the condition (iv) of Brownian motion, we
have P(B)= 1. This proves that Zt is a.s. continuous at t=0: �

Lemma 3.9. Let (Bt)t>0 be a Brownian motion. For all 0< t1< t2< : : : < tn<1 the joint
distribution of (Bt1; : : : ; Btn) is given by

P(a16Bt16 b1; a26Bt26 b2; : : : ; an6Btn6 bn)

=
Z
a1

b1

: : :

Z
an

bn

p(x1; t1)p(x2¡x1; t2¡ t1): : :p(xn¡xn¡1; tn¡ tn¡1) dx1: : :dxn;

where p(x; t) := 1

2�t
p exp(¡jxj2/2t).

Proof. Set t0=0 and define the following random vectors

X~ =

0BBBBBB@
Bt1

Bt2

���
Btn

1CCCCCCA; Y~ =

0BBBBBB@
Bt1

Bt2¡Bt1

���
Btn¡Btn¡1

1CCCCCCA:
By the conditions (i) and (ii) of Brownian motion the components of Y~ are independent. By
condition (iii) the random variable Bti¡Bti¡1 is normally distributed with mean zero and variance

ti¡ ti¡1. Hence, the joint density fY~ of Y~ satisfies the equation

fY~ (x1; : : : ; xn)= p(x1; t1)p(x2; t2¡ t1): : :p(xn; tn¡ tn¡1):

Observe that Y~ =MX~ , where the matrix M is defined by the equation

M

0BBBBBB@
x1
x2
���
xn

1CCCCCCA=
0BBBBBB@

x1
x2¡x1
���

xn¡xn¡1

1CCCCCCA:
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As a result, the joint density fX~ of X~ satisfies the equation

fX~ (x1; : : : ; xn) =fX~ (x~ )= fY~ (Mx~ ) jdetM j
=fY~ (Mx~ )= fY~ (x1; x2¡x1; : : : ; xn¡xn¡1)
=p(x1; t1)p(x2¡x1; t2¡ t1): : :p(xn¡xn¡1; tn¡ tn¡1);

where we used the fact that jdetM j=1 (in particular,M is invertible). This completes the proof. �

4 Construction of Brownian motion

In this section, we present the construction of Brownian motion given originally in 1934 by Poley
and Wiener. We only construct a Brownian motion Bt for t2 [0; �]. The construction for all t> 0
requires an additional step (see Exercise 1, Sheet 2). Let (Xn)n2N0 be a sequence of i.i.d. N (0; 1)
random variables in a probability space (
;F ;P). Define

Bt
(m)= t

�
p X0+

X
n=1

2m¡1
2
�

r
sin(nt)
n

Xn; t2 [0; �]; m2N0:

Observe that for any fixed m2N0 and ! 2
 the function t!Bt
(m)(!) is smooth. It is also easy

to see that for any fixed t2 [0; �] the series converges in mean square. Indeed, E(XnXl)= �n;l by
independence of (Xn)n2N0 and EXn=0, EXn

2=1. Hence,

E
����Bt

(m)¡Bt
(l)
����2= 2

�
E

���������� X
n=2k¡1

2m¡1

Xn
sin (nt)

n

����������
2

= 2
�

X
n=2k¡1

2m¡1

E(Xn
2) sin

2(nt)
n2

6 2
�

X
n=2k¡1

2m¡1
1
n2
;

which implies that the series defined by partial sums is Cauchy. Hence, we can define in the
probability space (
;F ;P) a stochastic process (Bt)t2[0;�] by the equality

Bt=
t

�
p X0+

X
n=1

1
2
�

r
sin(nt)
n

Xn; t2 [0; �]:

We shall prove that (Bt)t2[0;�] is a Brownian motion. To this end, we will use the characterization
of Brownian motion given in Lemma 3.6. It is evident that (Bt)t2[0;�] is Gaussian, B0= 0 and
EBt=0. To compute the covariance observe that

E
¡
Bs
(m)Bt

(m)�=Z
0

sZ
0

t

E
¡
@uBu

(m) @wBw
(m)�dudw (4.1)

and

@tBt
(m)= 1

�
p X0+

X
n=1

2m¡1
2
�

r
cos(nt)Xn=

X
n=0

2m¡1

Xn en(t);

where

e0(t) :=
1
�
p ; en(t) :=

2
�

r
cos(nt); n2N+;

is an orthonormal basis of L2([0; �]). Using E(XnXl)= �n;l we obtain

E
¡
@uBu

(m) @wBw
(m)�= X

n=0

2m¡1

E(Xn
2) en(u)en(w)=

X
n=0

2m¡1

en(u)en(w):
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Hence, for all f ; g 2L2([0; �]) we have

lim
m!1

Z
0

�Z
0

�

E
¡
@uBu

(m) @wBw
(m)� f(u)g(w) dudw

= lim
m!1

X
n=0

2m¡1

(f ; en)L2([0;�])(en; g)L2([0;�])=(f ; g)L2([0;�]);
(4.2)

where (f ; g)L2([0;�]) denotes the scalar product. Let 1I be the characteristic function of a set I:

Since Bt
(m) converges to Bt in mean square for all t2 [0; �], by (4.1) and (4.2) applied with f =1[0;t]

and g= 1[0;t] we obtain

E(BsBt)= lim
m!1

E
¡
Bs
(m)Bt

(m)�=(f ; g)L2([0;�])=
Z
0

�

1[0;s](u)1[0;t](u) du= s^ t:

In view of Lemma 3.6 in order to complete the proof that (Bt)t2[0;�] is a Brownian motion it
remains to show that (Bt)t2[0;�] has a.s. continuous paths. The idea is to prove that

¡
Bt
(m)�

t2[0;�]
converges a.s. to (Bt)t2[0;�] as m!1 uniformly in t2 [0; �]. Since

¡
Bt
(m)�

t2[0;�] has continuous
sample paths and uniform convergence preserves continuity this would imply that the sample paths
of (Bt)t2[0;�] are a.s. continuous.

Theorem 4.1. The sequence of stochastic processes
¡
Bt
(m)�

t2[0;�] converges as m!1 a.s.
uniformly in t2 [0; �] to (Bt)t2[0;�], that is

P

�
lim
m!1

sup
t2[0;�]

����Bt
(m)¡Bt

����=0
�
=1:

The process (Bt)t2[0;�] defined by (4) is a Brownian motion.

Remark 4.2. The following result is known as the Weierstrass M-test. Let (fn)n2N0 be a
sequence of functions defined on a set E. Suppose there exists a sequence of non-negative constants
(Mn)n2N0 such that jfn(x)j6Mn for all x2E and all n2N0 and

P
n=0
1 Mn<1. Then the seriesP

n=0
1 fn(x) converges uniformly on E.

Lemma 4.3. For all l; p2N0, p> l, we have

E(Tl;p2 )6
p¡ l
l2

+ 2(p¡ l)3/2
l2

; Tl;p := sup
t2[0;�]

����������X
n=l

p¡1

Xn
sin(nt)
n

����������:
Proof. See Exercise 2, Sheet 1. It is crucial to use independence of (Xn)n2N0. �

Proof of Theorem 4.1. By the argument presented above the statement of the theorem, it is
enough to show the uniform convergence. We have

Bt
(m)= t

�
p x0+

2
�

r X
i=0

m¡1

fi(t); fi(t)=
X
n=2i

2i+1¡1

Xn
sin(nt)
n

:
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Note that jfi(t)j6Mi := T2i;2i+1. It suffices to show that P(
P

i=0
1 Mi<1) = 1 and apply the

Weierstrass M -test. Observe that by the Cauchy-Schwarz inequality and Lemma 4.3 we have

(ETl;2l)26E(Tl;2l2 )6 1
l
+ 2
l1/2

6 4
l1/2

:

Consequently,

EMi=ET2i;2i+16
2
2i/4

; E

 X
i=0

1

Mk

!
=
X
i=0

1

E(Mk)6
X
i=0

1
2
2i/4

<1:

Since the random variable
P

i=0
1 Mk 2 [0;1] has finite expected value, it has to a.s. take finite

values, that is P(
P

i=0
1 Mi<1)= 1. This finishes the proof. �

5 Conditional expectation

The conditional probability of an event A given an event B is defined by

P(AjB)= P(A\B)
P(B)

provided P(B)> 0:

Note that we can think of B�
 as a new probability space equipped with the probability measure
P(�jB). Thus, it is natural to define the conditional expected value of a random variable X
given an event B as

E(XjB)=
Z



X(!)P(d!jB)= 1
P(B)

Z
B

X(!)P(d!) provided P(B)> 0:

Assume we are given a probability space (
;F ;P) and a random variable Y such that

Y =

8>>>>>><>>>>>>:
a1 on A1;
a2 on A2;
���

am on Am;

for distinct real numbers a1;a2;:::;am and disjoint events A1;A2;:::;Am, each of positive probability,
whose union is 
. Define a random variable

E(XjY ) :=

8>>>>>><>>>>>>:
E(X jA1) on A1;
E(X jA2) on A2;

���
E(X jAm) on Am:

We call the random variable E(XjY ) the conditional expected value of X given Y . Note that (see
the definition below):

� E(XjY ) is �(Y )-measurable.

�
R
A
X(!)P(d!)=

R
A
E(XjY )(!)P(d!) for all A2�(Y ).

In what follows, we generalize the above definition of E(XjY ) to arbitrary random variables Y .
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Definition 5.1. Let (
;F ;P) be a probability space, G be a sub-�-algebra of F and X : 
!Rd

be a random variable. We say that X is G-measurable if X¡1(B)2 G for all Borel sets B �Rd.
The sub-�-algebra of F defined by

�(X) := fX¡1(B)jB ¡Borel subset ofRdg

is called the �-algebra generated by X.

Remark 5.2. �(X) is the smallest sub-�-algebra of F with respect to which X is measurable.
�(X) contains all the events that can be expressed in terms of X.

Remark 5.3. If a random variable Y is a Borel function of X, that is, if Y = f(X) for some Borel
function f , then Y is �(X)-measurable. Conversely, suppose that a random variable Y is �(X)-
measurable. Then there exists a Borel function f such that Y = f(X).

Definition 5.4. A random variable X is integrable (resp. square-integrable) if EjX j<1
(resp. EX2<1). A random variable X is bounded if jX j<C a.s. for some deterministic C>0.

Theorem 5.5. Let (
;F ; P) be a probability space, X be an integrable random variable and G
be a sub-�-algebra of F. There exists a G-measurable random variable Z such thatZ

A

X(!)P(d!)=
Z
A

Z(!)P(d!) for all A2 G: (5.1)

A random variable Z satisfying the above properties is unique up to P-equivalence. We denote
by E(X jG) any representative of this equivalence class and call it the conditional expectation of
X with respect to G.

Proof. See e.g. Sec. 4.2 of [Bal17]. �

Definition 5.6. Let (
;F ;P) be a probability space and X and Y be random variables such that
EjX j<1. The conditional expectation of X given Y is defined by E(X jY ) :=E(X j�(Y )).

Remark 5.7. Using an approximation argument (see e.g. Prop. 1.11 in [Bal17]) one shows that the
condition (5.1) is equivalent to E(XW )=E(ZW ) for all bounded G-measurable random variables
W . If G=�(Y ), then by Remark 5.3 the above condition is equivalent to E(Xg(Y ))=E(Zg(Y ))
for all bounded Borel functions g.

Example 5.8. Let X and Y be random variables with the joint density fX;Y 2L1(R�R). If X
is integrable, then we claim that

E(X jY )�E(X j�(Y ))=
Z
xfX(xjY ) dx:

The conditional density fX(xjY ) of X given Y is defined by

fX(xjy)=

8<:
fX;Y (x; y)

fY (y)
if fY (y)=/ 0;

0 if fY (y)= 0;

10



where fY (y)=
R
fX;Y (x; y) dx is the density of Y . Let us verify the above claim about E(X jY ).

Since y 7!
R
xfX(xjy)dx is a Borel function, the random variable

R
xfX(xjY )dx is �(Y )-measurable.

Moreover, for all bounded Borel functions g we have

E(g(Y )E(X jY )) =E
�
g(Y )

Z
xfX(xjY ) dx

�
=
Z
g(y)

�Z
xfX(xjy) dx

�
fY (y) dy

=
Z
g(y)x fX;Y (x; y) dxdy

=E(g(Y )X):

Lemma 5.9. Let (
;F ; P) be a probability space, G, H be a sub-�-algebra of F and X; Y ; Z;

X1;X2; : : : be integrable random variables.

(a) Linearity: If �; � 2R, E(�X + �Y jG)=�E(X jG)+ �E(Y jG) a.s.

(b) Monotonicity: If X 6Y a.s., E(X jG)6E(Y jG) a.s.

(c) Monotone convergence: If Xn> 0 and Xn%X a.s., then E(XnjG)%E(X jG) a.s.

(d) Jensen's inequality: If �:R!R is convex and Ej�(X)j<1, �(E(X jG))6E(�(X)jG) a.s.

(e) Expectation: E(E(X jG))=EX.

(f) Iteration: If G �H, E(E(X jH)jG)=E(X jG) a.s.

(g) If Z is G-measurable and E(jXZ j)<1, E(Z jG)=Z and E(XZ jG)=ZE(X jG) a.s.

(h) If X is independent of G, then E(X jG)=EX a.s.

Proof. See Exercises 2 and 3, Sheet 2. �

Remark 5.10. A random variable X is independent of a �-algebra G if P(A\B) =P(A)P(B)
for all A2�(X) and B 2 G.

6 Martingales

Suppose Y1; Y2; : : : are independent random variables with mean zero and define the stochastic
process (Sn)n2N+ by Sn :=Y1+ � � �+Yn. We have

E(Sn+kjS1; :::; Sn)=E(SnjS1; :::; Sn)+E(Yn+1+ � � �+Yn+kjS1; :::; Sn)
=Sn+E(Yn+1+ � � �+Yn+k)=Sn:

Thus, the best estimate of the future value of the stochastic process (Sn)n2N+ given the history
up to time n, is just Sn. The process (Sn)n2N+ is an example of a martingale. Martingales are
stochastic processes that are meant to capture the notion of a fair game in the context of gambling.
If we interpret Yi as the payoff of a game at time i and Sn as the total winnings at time n, the
condition E(Sn+kjS1; :::; Sn) = Sn says that at any time the future expected winnings, given the
winnings to date, is just the current amount of money.
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Definition 6.1. Let (
;F ;P) be a probability space. A filtration is a family (Ft)t>0 of sub-�-
algebras of F such that if s6 t, then Fs�Ft. A stochastic process (Xt)t>0 is adapted to (Ft)t>0
if Xt is Ft-measurable for every t> 0.

Remark 6.2. You should think of Ft as the �-algebra of the events for which at time t we can
say whether they are satisfied or not.

Example 6.3. Given a process (Xt)t>0 define FtX to be the smallest sub-�-algebra of F containing
the �-algebras generated by Xs for s2 [0; t]. We call (FtX)t>0 the natural filtration of (Xt)t>0.
The �-algebra FtX contains all events that can be expressed in terms of (Xs)s2[0;t]. Every stochastic
process is adapted to its natural filtration.

Definition 6.4. Let (
;F ;P) be a probability space and (Ft)t>0 a filtration. A stochastic process
(Mt)t>0 is a martingale (resp. a supermartingale, a submartingale) if:

(a) EjMtj<1 for all t> 0.

(b) E(MtjFs)=Ms a.s. (reps. 6, >) if s< t.

(c) Mt is Ft-measurable for t> 0.

Example 6.5. A Brownian motion (Bt)t>0 is a martingale with respect to its natural filtration
(FtB)t>0. Indeed, by Cauchy-Schwarz inequality EjBtj6 (E(Bt

2))1/2= t1/2<1. Moreover, if t> s,
then

E(BtjFsB)=E(Bt¡Bs+BsjFsB)=E(Bt¡BsjFsB)+E(BsjFsB)=E(Bt¡Bs)+Bs=Bs:

The second equality follows from the property (a) and the third from the properties (g) and (h)
of the conditional expectation stated in Lemma 5.9.

Example 6.6. Let X be an integrable random variable and (Ft)t>0 be a filtration. For t>0 define
Mt to be (any representative of the equivalence class) E(X jFt). Then (Mt)t>0 is a martingale with
respect to the filtration (Ft)t>0 called the Doob martingale. See Exercise 3, Sheet 3 for a proof.

Proposition 6.7. If (Mt)t>0 is a martingale and ':R!R is convex and satisfies Ej'(Mt)j<1
for t> 0, then ('(Mt))t>0 is a submartingale. In particular, (jMtj)t>0 is a submartingale and
(Mt

2)t>0 is a submartingale if EMt
2<1 for all t> 0.

Proof. The conditions (a) and (c) hold true. By property (d) of Lemma 5.9 we have for s6 t

E('(Mt)jFs)> '(E(MtjFs))= '(Ms): �

Definition 6.8. Let (
;F ;P) be a probability space and (Ft)t>0 a filtration. A stopping time
is a random variable � : 
! [0;1] such that f� 6 tg 2Ft for all t> 0. Given a stopping time �
we define the �-algebra of events prior to � by

F� = fA2F jA\f� 6 tg2Ft for all t> 0g:

12



Remark 6.9. A stopping time can take infinite values. Intuitively, the condition f� 6 tg 2 Ft
means that at time t we should be able to say whether � 6 t or not.

Remark 6.10. If (Xt)t>0 is a continuous adapted stochastic process and A is an open set, then
the exit time from A defined by

�A := inf ft> 0 jXt2/ Ag2 [0;1]

is a stopping time. For a proof, see Prop. 3.7 in [Bal17].

Proposition 6.11. Let (
;F ;P) be a probability space and (Ft)t>0 a filtration.

(i). If �1; �2 are stopping times, then �1^ �2 and �1_ �2 are also stopping times.

(ii). If (Xt)t>0 is adapted and continuous and � is an a.s. finite stopping time, then

X� :! 7!X�(!)(!)1�<1(!)

is an F�-measurable random variable.

Proof. (i) See Prop. 3.5 in [Bal17]. (ii) See Prop. 3.6 and Prop. 2.1 in [Bal17]. �

Theorem 6.12. (Optional Stopping Theorem) Let (Mt)t>0 be a continuous martingale
(resp. supermartingale, submartingale) and let �1; �2 be two stopping times such that �16 �2 and
�2 is bounded a.s. Then

E(M�2jF�1)=M�1 (resp. 6;>):

Proof. See e.g. Theorem 5.13 and Theorem 5.2 in [Bal17]. �

Remark 6.13. Using the above theorem it is possible to prove that if (Mt)t>0 is a continuous
martingale and � is a stopping time, thenM� :=(Mt^�)t>0 is a martingale. See Prop. 5.6 in [Bal17].

Theorem 6.14. (Doob's Inequalities) Let (Mt)t>0 be a continuous martingale. Define

Mt
� := sup

s2[0;t]
jMsj:

Then:

(a) �P(Mt
�>�)6EjMtj for all t> 0 and �> 0.

(b) For all t> 0, if E(Mt
2)<1, then E((Mt

�)2)6 4E(Mt
2).

Proof. (a) Let �1= inf fs> 0 j jMsj 2/ (¡1; �)g ^ t and �2= t. Then �1 and �2 are stopping times
such that �16 �26 t<1. Applying the optional stopping theorem to the submartingale (jMsj)s>0
we obtain

jM�1j6E(jM�2j jF�1)=E(jMtj jF�1):
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Thus,

jM�1j1fjM�1j>�g6E(jMtj jF�1)1fjM�1j>�g:

Since 1fjM�1j>�g is F�1-measurable, by Lemma 5.9 (g) we obtain

jM�1j1fjM�1j>�g6E(jMtj1fjM�1j>�gjF�1):

Consequently,

E(jM�1j1fjM�1j>�g)6E(jMtj1fjM�1j>�g): (6.1)

Note that

fjM�1j>�g= fjMsj 2/ (¡1; �) for some s2 [0; t]g= fMt
�>�g:

Hence,

�P(Mt
�>�) =�P(jM�1j>�)=E(�1fjM�1j>�g)6E(jM�1j1fjM�1j>�g)

6E(jMtj1fjM�1j>�g)=E(jMtj1fMt
�>�g);

where the second bound follows from (6.1). We conclude that

�P(Mt
�>�)6E(jMtj1fMt

�>�g); (6.2)

which implies the claim (a).

(b) Recall that if X > 0 is a random variable and a deterministic constant T > 0, then for p > 0,
we have

E(X ^T )p=E

Z
0

T

p�p¡11f�6Xgd�=
Z
0

T

p�p¡1P(X >�)d�:

Using this fact with p = 2, the estimate (6.2), the Fubini theorem and the Cauchy�Schwartz
inequality we obtain

E((Mt
�^T )2) =

Z
0

T

2�P(Mt
�>�)d�

6
Z
0

T

2E(jMtj1fMt
�>�g) d�

=2E
�
jMtj

Z
0

T

1fMt
�>�gd�

�
=2E(jMtj (Mt

�^T ))
62 E(Mt

2)
q

E((Mt
�^T )2)

p
:

If Mt
�=0, then the statement is clearly true. Otherwise, E((Mt

�^T )2)2 (0; T 2] and

E((Mt
�^T )2)

p
6 2 E(Mt

2)
q

:

The claim (b) follows by taking the limit T!1 of both sides of the the above bound and invoking
the monotone convergence theorem. �
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7 Integration with respect to bounded variation processes

The fundamental problem we will address in the upcoming lectures is to rigorously define the
integrals Z

0

t

HsdXs;

where (Xt)t>0 and (Ht)t>0 are processes enjoying certain properties to be specified. The simplest
approach would be to define the integral separately for each path, that is, to studyZ

0

t

Hs(!)dXs(!) (7.1)

for all sample points ! 2
. Such a construction is provided by the Stieltjes integral. As we shall
see, this construction does not work if (Xt)t>0 is a martingale.

Our goal is to find a natural sufficient condition for sample paths of (Xt)t>0 that allows to construct
the integral (7.1). The remark below suggests a possible but unnecessarily restrictive sufficient
condition.

Remark 7.1. Recall that if � is a finite positive measure on (0; T ], then t 7! �((0; t]) is a right-
continuous non-decreasing function vanishing at zero. Conversely, given right-continuous non-
decreasing function g on [0; T ] there is a unique associated finite positive measure �g on (0; T ] such
that �((0; t])= g(t)¡ g(0).

Thus, if s 7!Xs(!) is a right-continuous non-decreasing function, then (7.1) can be defined as the
integral of H(!) with respect to the positive measure �X(!). Let us try to extend this definition
to the situation where Xs(!) is not monotonic.

Definition 7.2. A signed measure � on (0; T ] is the difference of two finite positive measures
on (0; T ].

It turns out that if � is a sign measure on (0; T ], then t 7! �((0; t]) is a right-continuous function
of bounded variation vanishing at zero.

Definition 7.3. The variation of a function g : [0; T ]!R on an interval [0; t] is defined by

Vt(g) := sup

(X
i=1

n

jg(ti)¡ g(ti¡1)j

���������� 0= t06 t16 � � �6 tn¡16 tn= t; n2N+

)
:

We say that g is of bounded variation if its total variation VT(g) is finite.

Remark 7.4. The variation Vt(g) is a non-decreasing function of t. If g is non-decreasing, then
Vt(g)= g(t). If g is Lipschitz continuous with a Lipschitz constant L, then Vt(g)6Lt.

Theorem 7.5. Let g be a right-continuous function of bounded variation. There exist unique
non-decreasing right-continuous functions g+; g¡ such that

g= g+¡ g¡ and V(g)= g++ g¡:
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Idea of proof. Define g+(t)=
1

2
(Vt(g)+ g(t)) and g¡(t)=

1

2
(Vt(g)¡ g(t)). �

Theorem 7.6. For every right-continuous function g of bounded variation on [0; T ] there is a
unique associated sign measure �g on (0; T ] such that �g((0; t]) = g(t)¡ g(0).

Idea of proof. Let g+; g¡ be as in the previous theorem and let �g+; �g¡ be the finite positive
measures associated to g+; g¡. Define �g= �g+¡ �g¡. Note that

�((0; t]) = �g+((0; t])¡ �g¡((0; t])= (g+(t)¡ g+(0))¡ (g¡(t)¡ g¡(0))= g(t)¡ g(0): �

Example 7.7. If g 2C1, then �(dt) = g 0(t) dt, where dt is the Lebesgue measure. If g= 1[a;1),
then �= �a is the Dirac delta at a. If g= 1[a;b)= 1[a;1)¡ 1[b;1), then �= �a¡ �b.

Definition 7.8. Let g : [0; T ]!R be right-continuous and of bounded variation with associ-
ated signed measure �g. The positive measure j�g j := �g++ �g¡ on (0; T ] associated to the non-
decreasing right-continuous function t 7! Vt(g) is called the variation of �g. For f 2L1([0; T ];
j�g j) and t2 [0; T ] we define

(f � g)t�
Z
0

t

f(s) dg(s) :=
Z

1(0;t](s)f(s)�g(ds);

where the integral with respect to a sign measure is defined byZ
f(s)�g(ds) :=

Z
f(s)�g+(ds)¡

Z
f(s)�g¡(ds):

We call (f � g)t as above the Lebesgue�Stieltjes integral of f with respect to g.

Remark 7.9. One shows that t 7! (f � g)t is of bounded variation for f ; g as in the definition above.

Proposition 7.10. Let g : [0; T ]!R be right-continuous and of bounded variation and f : [0; T ]!
R be continuous. Then the Lebesgue-Stieltjes integral coincides with the Riemann�Stieltjes
integral, that is,

(f � g)t= lim
n!1

X
i=1

n

f(si
(n))(g(ti

(n))¡ g(ti¡1
(n) ));

where 0= t0
(n)<t1

(n)< : : : < tn
(n)= t and si

(n)2 [ti¡1
(n) ; ti

(n)] are arbitrary such that

lim
n!1

max
i2f1; : : : ;ng

(ti
(n)¡ ti¡1

(n) )= 0:

Definition 7.11. We say that stochastic processes (X)t>0 and (Y )t>0 are indistinguishable
if their sample paths coincide a.s., that is, P(8t>0Xt=Yt)= 1.
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Definition 7.12. (Integral with respect to a process of bounded variation) Let
X=(Xt)t2[0;T ] be a.s. of bounded variation and H = (Ht)t2[0;T ]2L1([0; T ]; j�X j) a.s. The inte-
gral of H with respect to X is the equivalence class of indistinguishable stochastic processes

(H �X)t2[0;T ]�
�Z

0

t

HsdXs

�
t2[0;T ]

of bounded variation such that

(H �X)t(!) := (H(!) �X(!))t

for all t2 [0; T ] and all ! 2
 for which (H(!) �X(!))t is well-defined as the Lebesgue�Stieltjes
integral.

Imagine that Hs is the quantity of an asset held by an investor at time s and Xs is the price of
the asset at time s. Then the integral

R
0

t
HsdXs represents the gain realized in the time interval

[0; t]. The following proposition shows that the construction of
R
0

t
HsdXs presented above cannot

be apply in the situation when the price of the asset is modeled by a Brownian motion or, more
generally, a martingale.

Proposition 7.13. A continuous martingale (Mt)t>0 is of bounded variation iff it is a.s. con-
stant.

Remark 7.14. The above proposition implies that Brownian motion is a.s. not of finite variation.
In particular, it is a.s. not differentiable.

Proof. We may suppose that M0= 0 and prove that M = (Mt)t>0 is identically zero if it is of
bounded variation. Let Vt(M) be the variation of M on [0; t]. For K > 0 define

�K(!) := inf fs> 0 j Vs(M(!))>Kg; ! 2
:

By Remark 6.10 the random variable �K is a stopping time and by Remark 6.13 (Mt
�K)t>0 :=

(Mt^�K)t>0 is a martingale. By the above definitions (M~ t)t>0 has the variation bounded by K.
In particular, we have jMt

�K j6K and E((Mt
�K)2)6K2. Moreover, since t 7!Mt(!) is of bounded

variation for every s>0 there isK>0 such that Vs(M(!))6K and �K(!)>s. Hence, limK!1�k=
1 a.s.

For 0= t0<t1< : : : < tk= t we obtain

E((Mt
�K)2)=E

 X
i=1

k

((Mti
�K)2¡ (Mti¡1

�K )2)

!
=E

 X
i=1

k

(Mti
�K¡Mti¡1

�K )2
!
:

The last equality follows from E(Mti
�KMti¡1

�K )=E(E(Mti
�K jFti¡1)Mti¡1

�K )=E(M�K
ti¡1
2 ) since M�K is

a martingale. As a result,

E((Mt
�K)2)6E

h
Vt(M�K)max

i
jMti

�K¡Mti¡1
�K j

i
6KE

h
max
i
jMti

�K¡Mti¡1
�K j

i
:

When maxi jti¡ ti¡1j goes to zero, maxi jMti
�K¡Mti¡1

�K j goes to zero since M�K is continuous (and
hence uniformly continuous) on [0; T ]. Thus, by by the dominated convergence theorem and the
bound maxi jMti

�K ¡Mti¡1
�K j6K we infer that E((Mt

�K)2) = 0. This shows that Mt
�K=Mt^�K=0

a.s. for all t> 0.
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Since limK!1 �k=1 a.s., we have Mt= limK!1Mt^�K=0 a.s. for all t> 0. Thus, for every t> 0
there is an event Et�
 such that P(Et) = 1 and Mt(!) = 0 for ! 2Et. Let E =

T
t2Q\[0;1)

Et,

where Q is the set of rational numbers. Then E is an event such that P(E)=1 and Mt(!)=0 for
! 2E and t2Q\ [0;1). The statement follows now from the assumed a.s. continuity of M . �

8 Stochastic integral
Our goal is to define an integral Z

0

t

Hs dBs (8.1)

of a sufficiently generic stochastic process H = (Ht)t>0 with respect to a Brownian motion B =
(Bt)t>0. Since Brownian motion is a non-zero martingale, its variation is a.s. unbounded and the
construction of an integral presented in the previous section does not apply.

Throughout this section we assume that (
;F ;P) is a probability space, (Ft)t>0 is a filtration such
that F0 contains all the events of zero probability and (Bt)t>0 is a continuous Brownian motion
adapted to (Ft)t>0 and such that (Bs+t¡Bt)s>0 is independent of Ft for all t> 0. For simplicity,
we fix a finite time horizon T > 0 and construct the stochastic integral (8.1) for t2 [0; T ].

Remark 8.1. The assumptions that F0 contains all the events of zero probability is of technical
nature. Note that, for example, it guarantees that an a.s. limit of an adapted process is adapted.

Remark 8.2. Let (FtB)t>0 be the natural filtration of a Brownian motion (Bt)t>0 and N =
fA 2F jP(A) = 0g. We can define Ft to be the �-algebra generated by FtB and N , that is, the
smallest sub-�-algebra of F containing all the events from FtB and all the events of zero probability.
One checks that Bs+t¡Bt is independent of Ft for all s; t> 0.

8.1 Integral for simple predictable processes

Definition 8.3. We say that H =(Ht)t2[0;T ] is a simple predictable process if

Ht=
X
i=1

n

Xi1(ti¡1;ti](t) (8.2)

for some n2N+, 0= t0<t1< : : : < tn=T and random variables X1; : : : ; Xn such that EXi
2<1

and Xi is a Fti¡1-measurable for all i 2 f1; : : : ; ng. Let ET denote the vector space of simple
predictable processes.

Remark 8.4. Every H 2ET is adapted and left-continuous.

Definition 8.5. The integral of H 2 ET of the form (8.2) with respect to the Brownian motion
B is defined by

(H �B)t�
Z
0

t

Hs dBs :=
X
i=1

n

Xi(Bti^t¡Bti¡1^t); t2 [0; T ]:

The value of (H �B)t does not depend on the representation of H as an element of ET

Remark 8.6. If t2 (tk¡1; tk], then

(H �B)t=
X
i=1

k¡1

Xi(Bti¡Bti¡1)+Xk(Bt¡Btk¡1):
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Proposition 8.7. Let H;K 2ET and a; b2R. Then:

(i). ((aH + bK) �B)t= a (H �B)t+ b (K�B)t.

(ii). E(H �B)t=0.

(iii). E((H �B)t2)=E(
R
0

t
Hs
2ds) (Itô isometry).

(iv). ((H �B)t)t2[0;T ] is a continuous martingale.

(v). (H �B)t=(H1[0;t] �B)T.

Proof. To verify (i) we write H and K using the same partition. Let H be of the form (8.2) and
set t�i= ti^ t. To prove (ii) note that

E(H �B)t =
X
i=1

n

E(Xi(Bt�i¡Bt�i¡1))=
X
i=1

n

E(E(Xi(Bt�i¡Bt�i¡1)jFti¡1))

=
X
i=1

n

E(XiE(Bt�i¡Bt�i¡1jFti¡1))= 0

since

E(Bt�i¡Bt�i¡1jFti¡1)=E(Bt�i¡Bt�i¡1)=E(Bti^t¡Bti¡1^t)= 0:

Property (iii) follows from

E((H �B)t)2=
X
i=1

n X
j=1

n

E(XiXj(Bt�i¡Bt�i¡1)(Bt�j¡Bt�j¡1))

=
X
i=1

n

E(Xi
2(Bt�i¡Bt�i¡1)

2)+ 2
X
i=1

n¡1 X
j=i+1

n

E(XiXj(Bt�i¡Bt�i¡1)(Bt�j¡Bt�j¡1)):

For i < j we have

E(XiXj(Bt�i¡Bt�i¡1)(Bt�j¡Bt�j¡1)) =E(E(XiXj(Bt�i¡Bt�i¡1)(Bt�j¡Bt�j¡1)jFtj¡1))
=E(XiXj(Bt�i¡Bt�i¡1))E(Bt�j¡Bt�j¡1jFtj¡1)= 0:

We also have

E(Xi
2(Bt�i¡Bt�i¡1)

2)=E(E(Xi
2(Bt�i¡Bt�i¡1)

2jFti¡1))=E(Xi
2)E((Bt�i¡Bt�i¡1)

2jFti¡1):

Since

E((Bt�i¡Bt�i¡1)
2jFti¡1)=E((Bt�i¡Bt�i¡1)

2)= t�i¡ t�i¡1; (8.3)

we obtain

E(Xi
2(Bt�i¡Bt�i¡1)

2)= (EXi
2)( t�i¡ t�i¡1):
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As a result,

E((H �B)t)2=
X
i=1

n

(EXi
2)( t�i¡ t�i¡1)=

X
i=1

n

E

Z
t�i¡1

t�i

Xi
2ds=

X
i=1

n

E

Z
t�i¡1

t�i

Hs
2ds=E

Z
0

t

Hs
2ds:

Let us turn to the proof of (iv). Continuity of ((H �B)t)t2[0;T ] follows immediately from the defi-
nition and continuity of the Brownian motion B. The process ((H �B)t)t2[0;T ] is clearly integrable
since by (iii) it is square-integrable. It remains to check that E((H �B)tjFs)= (H �B)s if s< t. By
Lemma 5.9 (f) it suffices to demonstrate this for tk¡16 s< t6 tk. For such s; t we have

E((H �B)t¡ (H �B)sjFs)=E(Xk(Bt¡Bs)jFs)=XkE((Bt¡Bs)jFs)=XkE(Bt¡Bs)= 0

since Xk is Ftk¡1-measurable and Ftk¡1�Fs.

To prove (v) we observe that if H 2ET if of the form (8.2) and t2 (tk¡1; tk], then

H1[0;t]=
X
i=1

k¡1

Xi1(ti¡1;ti]+Xk1(tk¡1;t]2ET

and (H �B)t=(H1[0;t] �B)T . This finishes the proof. �

8.2 Isometric Itô integral

Definition 8.8. Let B(A) denote the Borel �-algebra of a topological space A. We say that a
process H =(Ht)t2[0;T ] measurable if the map

([0; T ]�
;B([0; T ])
F)3 (t; !) 7!Ht(!)2 (R;B(R))

is measurable. The �-algebra Gpr over [0; T ]�
 generated by (s; t]�A with s< t and A2Fs is
called the predictable �-algebra. We say that a process H=(Ht)t2[0;T ] predictable if the map

([0; T ]�
; Gpr)3 (t; !) 7!Ht(!)2 (R;B(R))

is measurable.

Every predictable process is adapted. In practice, we often encounter adapted and continuous
processes. The following lemma demonstrates that such processes are predictable.

Lemma 8.9. If the process X =(Xt)t2[0;T ] is adapted and continuous, then X is predictable.

Proof. Define

Xt
(n) :=

X
k=0

n¡1

XkT /n 1(kT /n;(k+1)T /n](t); t2 [0; T ]; n2N+:

Then X(n) is predictable and from the continuity of X, it follows that Xt
(n)(!)!Xt(!) for all

t 2 (0; T ] and ! 2
. The predictability of X follows from the fact that the pointwise limit of a
sequence of measurable functions is measurable. �
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Definition 8.10. We define HT :=L2([0; T ]�
; Gpr; �
P), where � is the Lebesgue measure
and Gpr is the predictable �-algebra. That is HT is the set of predictable processes H=(Ht)t2[0;T ]
such that

kHkHT := E

�Z
0

T

Hs
2ds

�s
<1:

Simple predictable processes are predictable and square integrable. Hence, ET �HT .

Lemma 8.11. HT coincides with the closure E�T of ET in L2([0; T ]�
;B([0; T ])
F ; �
P).

Proof. SinceHT is closed we have E�T �HT . It remains to prove that E�T is dense in HT . Denote by
Gpr� the algebra generated by sets of the form (s; t]�A with A2Fs. Elements of Gpr� are of the form
((t0; t1]�A1)[ :::[ ((tn¡1; tn]�An) for some 0= t0<t1<:::< tn=T and Ai2Fti¡1. Observe that:

(i). 1G2ET �E�T for every set G2Gpr� .

(ii). E�T is a vector space.

(iii). Iffn2E�T is a sequence of non-negative functions that increase to a bounded function f , then
f 2E�T :

It follows from the monotone class theorem that E�T contains all bounded functions that are mea-
surable with respect to �(Gpr� )= Gpr. �

Definition 8.12. LetMT be the set of equivalence classes of indistinguishable continuous mar-
tingales M =(Mt)t2[0;T ] such that M0=0 and

kM kMT := EMT
2

p
<1:

Lemma 8.13. MT is a Hilbert space and we have

E
�

sup
t2[0;T ]

Mt
2
�
6 4kM kMT

2 : (8.4)

Proof. The bound (8.4) follows immediately from Doob's inequality stated in Theorem 6.14 (b).
For the proof thatMT is a Hilbert space see Exercise 4, Sheet 3. �

Note that by Proposition 8.7 for all H 2ET , the process (H �B)t2[0;T ] is a continuous martingale
such that

kH �BkMT

2 =E((H �B)T)2=E

�Z
0

T

Hs
2ds

�
= kHkHT

2 <1:

Hence, the map

I� :HT �ET 3H 7! (H �B)t2[0;T ]2MT

is well-defined and is an isometry. In particular, the map I� is bounded. Since ET is dense in HT
the map I�: ET!MT extends to the unique map I:HT!MT . We have I(H)= limn!1I

�(H(n))
for every sequence (H(n))n2N+ of elements of ET converging to H 2HT . The map I:HT!MT is
called the Itô isometry.
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Definition 8.14. The integral of H 2HT with respect to the Brownian motion B is defined by

(H �B)t2[0;T ]�
�Z

0

t

Hs dBs

�
t2[0;T ]

:= I(H)

and satisfies the properties formulated in Proposition 8.7.

Remark 8.15. Note that we cannot say that the value of the integral at ! depends only on the
paths t 7!Ht(!) and t 7!Bt(!), as the integral is not defined pathwise.

Theorem 8.16. (Stopping of stochastic integral) Let � >0 be a stopping time and H 2HT.
Then a.s.

(H �B)�^t=(1[0;� ]H �B)t; t2 [0; T ]:

Proof. Step 1. LetH 2ET and � takes only finitely many values. By possibly extending the sequence
of times we can assume that � takes values 0 = t06 t16 : : : 6 tn6 T and H =

P
i=1
n Xi 1(ti¡1;ti].

Then we have

1[0;� ](t)Ht=
X
i=1

n

1[0;� ](t)Xi1(ti¡1;ti](t)=
X
i=1

n

1f�>tgXi1(ti¡1;ti](t)=
X
i=1

n

1f�>ti¡1gXi1(ti¡1;ti](t):

Since 1f�>ti¡1gXi is Fti¡1-measurable, 1[0;� ]H 2ET . We compute

(H1[0;� ] �B)t =
X
i=1

n

1f�>ti¡1gXi(Bti^t¡Bti¡1^t)

=
X
i=1

n X
j=i

n

1f�=tjgXi(Bti^t¡Bti¡1^t)

=
X
j=1

n

1f�=tjg
X
i=1

j

Xi(Bti^t¡Bti¡1^t)

=
X
j=1

n

1f�=tjg(H �B)tj^t=(H �B)�^t

Step 2. Let H 2 ET and � arbitrary stopping time. Take a sequence of stopping times �n taking
finitely many values such that �n& � . By Step 1, (H �B)�n^t=(1[0;�n]H �B)t. By the continuity of
the stochastic integral, (H �B)�n^t! (H �B)�^t a.s. On the other hand, by linearity of the integral
and Itô isometry

E((1[0;�n]H �B)t¡ (1[0;� ]H �B)t)2=E((1(� ;�n]H �B)t)2=E

Z
0

t

1(� ;�n](s)Hs
2ds! 0:

The convergence follows from the Lebesgue theorem, as the process 1(� ;�n](s)Hs
2 converges point-

wise to zero and is dominated by Hs
2. Hence

(H �B)�^t                          
a:s:

(H �B)�n^t=(1[0;�n]H �B)t!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !L2(
) (1[0;� ]H �B)t:

That is, (H �B)�^t=(1[0;� ]H �B)t.
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Step 3. Let H 2HT and � arbitrary stopping time. We take H(n)2ET such that H(n)!H in HT .
From Step 2 we know that (H(n) �B)�^t=(1[0;� ]H(n) �B)t. We have

E((H �B)�^t¡ (H(n) �B)�^t)26 4E((H ¡H(n)) �B)T2 =4E
Z
0

T

(Hs¡Hs
(n))2ds! 0;

where the inequality follows from Doob's Theorem 6.14 applied to the martingale ((H ¡H(n)) �B).
Moreover,

E((1[0;� ]H �B)t¡ (1[0;� ]H(n) �B)t)2=E

Z
0

t

1[0;� ](s)
¡
Hs¡Hs

(n)�2ds6E

Z
0

T

(Hs¡Hs
(n))2ds! 0:

In consequence,

(H �B)�^t                                          L2(
) (H(n) �B)�^t=(1[0;� ]H(n) �B)t!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !L2(
) (1[0;� ]H �B)t

Step 4. By the previous step we know that for every t> 0 there is an event Et� 
 such that
P(Et)= 1 and (H �B)�^t=(1[0;� ]H �B)t on the event Et. Let E=

T
t2Q\[0;1)

Et, where Q is the

set of rational numbers. Then E is an event such that P(E)=1 and (H �B)�^t=(1[0;� ]H �B)t on
the event E for all t2Q\ [0;1). The statement follows now from the continuity of the stochastic
integral. �

8.3 Localization

Suppose that f is a continuous function. Using Itô isometry we can define the stochastic integral

�Z
0

t

f(Bs) dBs

�
t2[0;T ]

= I(f(Bs)s2[0;T ])

only if (f(Bs))s2[0;T ] 2 HT . Since (f(Bs))s2[0;T ] is predictable, we only need to assume that

E
¡R

0

T
f(Bs)2ds

�
<1, which is, unfortunately, a quite restrictive condition.

Example 8.17. For f(x)= exp(x4) we have

E

�Z
0

T

(f(Bs))2 ds
�
=E

�Z
0

T

e2Bs
4
ds
�
=
Z
0

T

E(e2Bs
4
)ds=

Z
0

T

0@Z
R

e2x
4 e¡

x2

2s

2�s
p dx

1Ads=1
Thus, (eBs

4
)s2[0;T ]2/HT despite the fact that the function x 7! exp(x4) is smooth.

Definition 8.18. Let HT ;loc be the space of equivalence classes of indistinguishable predictable
processes H =(Ht)t2[0;T ] such that

R
0

T
Hs
2ds<1 a.s.

Definition 8.19. A non-decreasing sequence of stopping times (�n)n2N+ taking values in [0; T ]
is a localizing sequence for H 2HT ;loc if:

(1) H1[0;�n]2HT for every n2N+ and

(2) P(9n2N+�n=T )= 1.
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Proposition 8.20. Let H 2HT ;loc and define

�n= inf
�
t2 [0; T ]

��������Z
0

t

Hs
2ds>n

�
^T :

Then (�n)n2N+ is a localizing sequence for H.

Proof. Since (
R
0

t
Hs
2ds)t>0 is a continuous adapted process, by Remark 6.10 the random variable

�n is a stopping time. It is evident that �n6 �n+1. Moreover,

P(9n2N+�n=T )=P

�Z
0

T

Ht
2dt <1

�
=1:

Finally, H1[0;�n] is predictable and

E

�Z
0

T

(Ht1[0;�n](t))
2dt
�
=E

�Z
0

�n

Ht
2dt
�
6n<1:

This finishes the proof. �

Lemma 8.21. Suppose that H 2HT ;loc and (�n)n2N+ is a localizing sequence for H. There exists
an event E of probability one such that on the event E we have

(H1[0;�m] �B)�n^t=(H1[0;�n] �B)t;

for all t2 [0; T ], n;m2N+ such that n6m.

Proof. By Theorem 8.16 and the identity H1[0;�m]1[0;�n]=H1[0;�n] for every n;m2N+ such that
n6m, there exists an event En;m of probability one such that the stated equality holds true for all
t2 [0;T ] and all sample points from En;m. To conclude the proof we set E=

T
n;m2N+;n6mEn;m. �

Definition 8.22. Let H 2HT ;loc and (�n)n2N+ be a localizing sequence for H. The integral of
H with respect to the Brownian motion B is a continuous process (H �B)t2[0;T ] such that

(H �B)t^�n�
Z
0

t^�n
Hs dBs=(H1[0;�n] �B)t; t2 [0; T ]; n2N+; (8.5)

holds true on an event of probability one.

Proposition 8.23. The process (H �B)t2[0;T ] satisfying the above conditions exists, is unique
up to indistinguishability and does not depend on the choice of the localizing sequence.

Proof. Let (�n)n2N+ be a localizing sequence and E be the event from Lemma 8.21. On the event
An :=E \f�n=T g we define

(H �B)t := (H1[0;�n] �B)t; t2 [0; T ]:

The above definition is consistent since by Lemma 8.21 for all m>n we have

(H1[0;�n] �B)t=(H1[0;�m] �B)t
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on the event E \ f�n= T g. Moreover, it guarantees that (8.5) is satisfied. Uniqueness is evident
since P

¡S
n2N+

An
�
=1 by Definition 8.19 and Lemma 8.21. Continuity of (H �B)t2[0;T ] follows

from continuity of (H1[0;�n] �B)t2[0;T ]. The fact that (H �B)t2[0;T ] does not depend on the choice
of a localizing sequence is a consequence of Theorem 8.16. �

Example 8.24. The integral Xt=
R
0

t
f(Bs) dBs is well-defined for any continuous function f :

R!R but need not be a martingale. For example,

Xt=
Z
0

t

exp(Bs4) dBs

is well-defined but is not a martingale. One shows that EjXtj=1 and EXt is not defined.

Definition 8.25. A process M=(Mt)t2[0;T ] is a local martingale if there exists a non-decreasing
sequence (�n)n2N+ of stopping times such that limn!1 �n= T a.s and such that (Mt^�n)t2[0;T ]
is a martingale. We say that the sequence (�n)n2N+ as above reduces the local martingale M.
Let MT ;loc be the set of equivalence classes of indistinguishable continuous local martingales
M =(Mt)t2[0;T ] such that M0=0.

Proposition 8.26. For all H 2HT ;loc we have

(H �B)t2[0;T ]2MT ;loc:

Proof. Let (�n)n2N+ be as in Definition 8.22. By Definition 8.14 (H1[0;�n] �B)t2[0;T ]2MT . Hence,
the statement follows immediately from Definition 8.22. �

9 Integral with respect to continuous local martingale

In the previous section, we defined the integral
R
HsdBs. It turns out that without much difficulty,

this definition can be generalized to
R
HsdMs, where (Mt)t>0 is a continuous martingale (or even

a continuous local martingale).

9.1 Doob-Meyer decomposition

The foundation of the stochastic integral construction with respect to a Brownian motion is that
(Bt)t>0 and (Bt

2¡ t)t>0 are martingales. It turns out that for any square-integrable continuous
martingale (Mt)t>0, there exists a non-decreasing process (Yt)t>0 such that (Mt

2¡ Yt)t>0 is a
martingale.

Theorem 9.1. (Doob-Meyer decomposition) Let M 2MT. There exists a process hM i=
(hM it)t2[0;T ] with continuous, non-decreasing paths such that hM i0=0 and (Mt

2¡hM it)t2[0;T ]
is a martingale. Moreover, the process hM i is uniquely determined up to indistinguishability.

Proof. We will only prove the uniqueness of the decomposition; the proof of existence can be found
in Sec. IV.1 of [RY04]. Assume that the processes (Yt)t2[0;T ] and (Zt)t2[0;T ] are non-decreasing
and (Mt

2¡Yt)t2[0;T ] and (Mt
2¡Zt)t2[0;T ] are martingales with continuous trajectories. The paths

of the process Yt¡Zt have finite variation, and furthermore, Yt¡Zt=(Mt
2¡Zt)¡ (Mt

2¡Yt) is a
continuous martingale. Therefore, by Proposition 7.13, Yt¡Zt=0 for all t2 [0; T ] a.s. �
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Example 9.2. If B is a Brownian motion, then hB it= t. Indeed,

E(Bt
2¡ tjFs)=E(Bs2+2(Bt¡Bs)Bs+(Bt¡Bs)2¡ tjFs)=Bs

2+0+(t¡ s)¡ t=Bs
2¡ s:

Remark 9.3. An integrable right-continuous adapted process (Xt)t>0 is a martingale if and only
if, for every bounded stopping time � we have EX� =EX0. See Problem 3, Sheet 5.

Proposition 9.4. Let H 2HT. Then h
R
HsdBsit=

R
0

t
Hs
2ds.

Proof. We have to prove that the process M =(Mt)t2[0;T ] defined by

Mt=
�Z

0

t

Hs dBs

�
2

¡
Z
0

t

Hs
2ds

is a martingale. We know that (
R
0

t
Hs dBs)t2[0;T ] is continuous, adapted and square integrable.

Hence, M is continuous, adapted and square integrable. For a bounded stopping time � 2 [0; T ],
by Theorem 8.16 and the Itô isometry we obtain

E

��Z
0

�

HsdBs

�
2
�
=E

��Z
0

T

1[0;� ](s)Hs dBs

�
2
�
=E

�Z
0

T

1[0;� ](s)Hs
2ds

�
=E

�Z
0

�

Hs
2ds

�
:

Therefore,

EM� =E

��Z
0

�

Hs dBs

�
2

¡
Z
0

�

Hs
2ds

�
=0=EM0:

The statement follows from Remark 9.3. �

Remark 9.5. If M =(Mt)t2[0;T ] is a continuous bounded martingale, then

hM it= lim
n!1

X
i=1

n

jMti¡Mti¡1j2

in mean square, where 0= t0
(n)<t1

(n)< : : : < tn
(n)= t6T are arbitrary such that

lim
n!1

max
i2f1; : : : ;ng

(ti
(n)¡ ti¡1

(n) )= 0:

See Exercise 3, Sheet 7.

9.2 Integral for elementary processes

Definition 9.6. The integral of a simple predictable process H 2ET of the form

Ht=
X
i=1

n

Xi1(ti¡1;ti]

with respect to M 2MT is defined by

(H �M)t�
Z
0

t

HsdMs :=
X
i=1

n

Xi(Mti^t¡Mti¡1^t); t2 [0; T ]:
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Proposition 9.7. Let M 2MT, H;K 2ET and a; b2R. Then:

(i). ((aH + bK) �M)t= a(H �M)t+ b(K�M)t.

(ii). E(H �M)t=0.

(iii). E((H �M)t2)=E
R
0

t
Hs
2dhM is.

(iv). ((H �M)t)t2[0;T ] is a continuous martingale.

(v). (H �M)t=(H1[0;t] �M)T.

Proof. The proof is almost identical to the proof of Proposition 8.7. To prove Item (iii) we use
the following observation

E((Mt¡Ms)2jFs) = E(Mt
2¡hM itjFs)+E(hM itjFs)¡ 2MsE(MtjFs)+Ms

2

= Ms
2¡hM is+E(hM itjFs)¡Ms

2=E(hM it¡hM isjFs);

which is a generalization of (8.3). �

9.3 Isometric Itô integral

Definition 9.8. For M 2MT let HT(M) be the space of predictable processes H = (Ht)t2[0;T ]
such that

kHkHT(M) := E

�Z
0

T

Hs
2dhM is

�s
<1

Lemma 9.9. ET�HT(M) is dense.

Proof. The statement can be proved along the lines of the proof of Lemma 8.11. �

Note that by Proposition 9.7 for all M 2MT and H 2 ET , the process (H �M) is a continuous
martingale such that

kH �M kMT

2 =E((H �M)T)2=E

Z
0

T

Hs
2dhM is= kHkHT(M)

2 <1:

Hence, the map

IM
� :HT(M)�ET 3H 7! (H �B)t2[0;T ]2MT

is well-defined and is an isometry. In particular, the map I� is bounded. Since ET is dense in
HT the map IM

� : ET !MT extends to the unique map IM:HT(M)!MT . We have IM(H) =
limn!1IM

� (Hn) for every sequence (Hn)n2N+ of elements of ET converging to H 2HT(M).
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Definition 9.10. The integral of H 2HT(M) with respect to M 2MT is defined by

(H �M)t2[0;T ]�
�Z

0

t

HsdMs

�
t2[0;T ]

:= IM(H)

and satisfies the properties formulated in Proposition 9.7.

9.4 Localization

Notation 9.11. For a stochastic process X = (Xt)t>0 and a stopping time � > 0 we denote by
X� the stopped process (Xt^�)t>0.

Lemma 9.12. For all M 2MT and all stopping times � we have M� 2MT and hM� i= hM i�.

Proof. We know thatM� is a continuous martingale. By Theorem 6.12 and the Jensen inequality,

E(Mt
�)2=EMt^�

2 =E(E(MT jFt^�)2)6E(E(MT
2 jFt^�))=E(MT):

Thus, M� 2MT . The process hM i� starts from zero, has continuous, non-decreasing paths and

(M�)2¡hM i� =(M2¡hM i)�

is a martingale, so hM i� satisfies all the conditions of the definition of hM� i. �

We can generalize the Doob-Meyer decomposition to the case of continuous local martingales.

Proposition 9.13. For all M 2MT ;loc there exists a process hM i=(hM it)t2[0;T ] with contin-
uous, non-decreasing paths such that hM i0= 0 and (Mt

2¡ hM it)t>0 2MT ;loc. Moreover, the
process hM i is uniquely determined up to indistinguishability.

Proof. Since M 2MT ;loc, there exists an increasing sequence of stopping times �̂n converging to
T such that M �̂n is a martingale. Define

�~n := inf ft> 0 j jMt
�̂nj>ng:

Then (M �̂n)�~n=M�n, where �n := �̂n ^ �~n, is a bounded martingale. Hence, M�n 2MT . Define
Y (n)= hM�ni, then for n6m,

Y (n)= hM�ni= h(M�m)�ni= hM�mi�n=(Y (m))�n:

Hence, there exists a continuous process Y =(Yt)t2[0;T ] satisfying Yt=Yt
(n) on the events ft6 �ng,

n2N+. Obviously, Y0=Y0
(n)=0. Moreover, Y has non-decreasing paths and

(M2¡Y )�n=(M�n)2¡Y �n=(M�n)2¡hM�ni;

so M2¡Y is a continuous local martingale on [0; T ]. This proves existence.
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To show uniqueness, let Y and Y~ be continuous processes with non-decreasing trajectories such that
Y0=Y~0=0 andM2¡Y andM2¡Y~ are local martingales. There exists a sequence of stopping times
�n%T such that (M2¡Y )�n and (M2¡Y~)�n are martingales. The process (Y ¡Y~)�n is therefore
a martingale with bounded variation. Thus, by Proposition 7.13 it is constant. Consequently,
Y �n=Y~�n. Upon taking the limit n!1, we obtain Y =Y~ . �

Along the lines of the proof of Theorem 8.16, one proves a stopping theorem for the stochastic
integral with respect to square-integrable martingales.

Theorem 9.14. Let � > 0 be a stopping time, M 2MT and H 2HT(M). Then a.s.

(H �M)�^t=(H1[0;� ] �M�)t; t2 [0; T ]:

Definition 9.15. For M 2MT ;loc let HT ;loc(M) be the space of equivalence classes of indistin-
guishable predictable processes H =(Ht)t2[0;T ] such that

R
0

T
Hs
2dhM is<1 a.s.

Definition 9.16. Let M2MT ;loc, H 2HT ;loc(M) and (�n)n2N+ be an increasing sequence of
stopping times converging to T such that M�n2MT and 1[0;�n]H 2HT(M�n). The integral of H
with respect to M is a continuous process (H �M)t2[0;T ] such that

(H �M)t^�n�
Z
0

t^�n
HsdMs=(H1[0;�n] �M�n)t; t2 [0; T ]; n2N+;

holds true on an event of probability one.

Following the proof of Proposition 8.23 it is not difficult to show that the integral (H �M)t2[0;T ] is
well-defined, unique (up to indistinguishability) and does not depend on the choice of the sequence
of stopping times �n. The following fact generalizing Theorem 9.14 is true.

Theorem 9.17. Let � > 0 be a stopping time, M 2MT ;loc and H 2HT ;loc(M). Then a.s.

(H �M)�^t=(H1[0;� ] �M)t=(H1[0;� ] �M�)t=(H �M�)t t2 [0; T ]:

It is also possible to show that the constructions of the integral on [0; T ] and [0; T~] are consistent
for arbitrary T <T~, that is (H �M)t2[0;T ] coincides with (H �M)t2[0;T~] for all t2 [0; T ]. This allows
to define the process (H �M)t>0 for all H=(Ht)t>0 andM =(Mt)t>0 such that (Ht)t2[0;T ]2HT ;loc
and (Mt)t2[0;T ]2MT ;loc for all T 2 (0;1).

10 Quadratic covariation

The quadratic covariation is defined not only for a single martingale, but also for a pair of mar-
tingales.

Definition 10.1. The quadratic covariation of two continuous local martingales M and N is the
process hM;N i defined by the formula:

hM;N i= 1
4
hM +N i¡ 1

4
hM ¡N i:
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Theorem 10.2. Let M;N 2MT (resp. MT ;loc). Then hM;N i is the unique process on [0;
T ] with continuous paths of bounded variation such that hM;N i0= 0 and MN ¡ hM;N i is a
martingale (resp. a local martingale) on [0; T ].

Proof. Uniqueness is proved as for hM i, and the mentioned properties follow from the identity

MN ¡hM;N i= 1
4
¡
(M +N)2¡hM +N i

�
¡ 1
4
¡
(M ¡N)2¡hM ¡N i

�
: �

Theorem 10.3. Let M;N 2MT ;loc. We have

(a). hM;M i= hM i= h¡M i,

(b). hM;N i= hN;M i,

(c). hM ¡M0; N i= hM;N ¡N0i= hM ¡M0; N ¡N0i= hM;N i,

(d). (N;M) 7! hM;N i is a bilinear map,

(e). hM� ; N� i= hM;N i� = hM;N� i= hM;N i� for every stopping time �,

(f). If H 2HT ;loc(M) and G2HT ;loc(N), then h
R
HdM;

R
G dN i=

R
HG dhM;N i.

Proof. See Exercise 1, Sheet 8. �

11 Further properties of the stochastic integral

In this section, we will show a number of important properties of the stochastic integral, which
will allow us later to prove the Itô formula.

11.1 Dominated convergence for stochastic integrals

Theorem 11.1. (Dominated convergence) Let M 2MT ;loc, G 2 HT ;loc(M) and H(n) =¡
Ht
(n)�

t>0 be a sequence of predictable processes such that a.s. limn!1Ht
(n)=Ht and jHt

(n)j�Gt

for all t2 [0; T ]. Then H(n);H 2HT ;loc(M) and for all t2 [0; T ]

lim
n!1

Z
0

t

Hs
(n)dMs=

Z
0

t

Hs dMs

in probability.

Proof. The process H is predictable as the limit of predictable processes. For t2 [0; T ] we have

Z
0

t

Hs
2 dhM is_

Z
0

t¡
Hs
(n)�2 dhM is6Z

0

t

Gs
2dhM is<1 a:s:

Hence, H(n);H 2HT ;loc(M) and the integrals appearing in the statement of the theorem are well-
defined.
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Step 1 . Suppose that M 2MT and G2HT(M). We have

lim
n!1

Ht
(n)=Ht;

¡
Ht
(n)¡Ht

�
26 4Gt

2; kGkHT(M)=E

Z
Gt
2dhM it<1:

Hence, by the Lebesgue dominated convergence theorem for the integral with respect to a function
of a bounded variation we have limn!1H(n)!H in HT(M). Consequently, by the Itô isometry

Z
0

t

Hs
(n)dMs!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !L2(
)

Z
0

t

HsdMs

as n!1. To conclude we note that convergence in mean square implies convergence in probability.

Step 2 . Let (�k)k2N+ be an increasing sequence of stopping times such that limk!1�k=T and

M�k2MT ; 1[0;�k]G2HT(M�k):

Since

1[0;�k]H
(n)61[0;�k]G;

it follows that 1[0;�k]H
(n)2HT(M�k). By Theorem 9.17 and Step 1 we obtain

Z
0

t^�k
Hs
(n)dMs=

Z
0

t

1[0;�k](s)Hs
(n)dMs

�k!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !L2(
)
Z
0

t

1[0;�k]Hs dMs
�k=

Z
0

t^�k
Hs dMs

as n!1. Consequently, on the event f�k> tg we have

Z
0

t

Hs
(n)dMs!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !L2(
)

Z
0

t

HsdMs

as n!1. Hence, for every � > 0 and k 2N+,

lim
n!1

An;k=0; An;k :=P

�
�k> t and

��������Z
0

t

Hs
(n)dMs¡

Z
0

t

HsdMs

��������> ��:
Observe that

P

���������Z
0

t

Hs
(n)dMs¡

Z
0

t

HsdMs

��������> ��6An;k+P(�k<t):

To conclude we choose k 2N+ big enough so that P(�k<t)6 "/2 and then n2N+ big enough so
that An;k6 "/2. �

11.2 Integration by substitution

Lemma 11.2. Let 06u6 t6T, M 2MT ;loc, H 2HT ;loc(M) and Y be a bounded Fu-measurable
random variable. Then Z

u

t

YHs dMs=Y

Z
u

t

Hs dMs;

where
R
u

t
Hs dMs :=

R
0

t1(u;t](s)HsdMs.
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Proof. Step 1. Let M 2MT and H 2 ET . By possibly extending the sequence of times we can
assume that H =

P
i=1
n Xi1(ti¡1;ti] and u= tk. Since Y is Fu-measurable we have YHs2ET and

Z
u

t

YHs dMs=
X

i=k+1

n

YXi(Mti^t¡Mti¡1^t)=Y
X

i=k+1

n

Xi(Mti^t¡Mti¡1^t)=Y

Z
u

t

Hs dMs:

Step 2. Let M 2MT and H 2HT(M). We take H(n)2ET such that H(n)!H in HT(M). From
Step 1 we know that

R
u

t
YHs

(n) dMs= Y
R
u

t
Hs
(n) dMs. Let C > 0 be a deterministic constant such

that jY j6C. By the Itô isometry

E

�Z
u

t

Y
¡
Hs¡Hs

(n)�dMs

�
2

=E

Z
0

t

Y 2
¡
Hs¡Hs

(n)�dhM is6C2 kH ¡H(n)kHT(M)
2 ! 0:

Similarly,

E

�
Y

Z
u

t¡
Hs¡Hs

(n)�dMs

�
2

6C2E

�Z
u

t¡
Hs¡Hs

(n)�dMs

�
2

6C2 kH ¡H(n)kHT(M)
2 ! 0:

Hence, by the linearity of the stochastic integral we obtain

Z
u

t

YHs
(n) dMs                                          L2(
)

Z
u

t

YHs
(n) dMs=Y

Z
u

t

Hs
(n) dMs!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !L2(
)

Y

Z
u

t

HsdMs:

Step 3. Let M 2MT ;loc and H 2HT ;loc(M). Let (�n)n2N+ be an increasing sequence of stopping
times converging to T a.s. such that M�n2MT and 1[0;�n]H 2HT(M�n). By Step 2 we have

Z
u

t

1[0;�n](s)YHs dMs
�n=Y

Z
u

t

1[0;�n](s)Hs dMs
�n:

By Theorem 9.17 we obtain Z
u

t^�n
YHs dMs=Y

Z
u

t^�n
Hs dMs:

To complete the proof we take the limit n!1. �

Definition 11.3. A process H = (Ht)t2[0;T ] is locally bounded if there exists a sequence of
stopping times (�n)n2N+ such that �n%T a.s. and for all n2N+ the process (Ht^�n¡H0)t>0 is
bounded.

Remark 11.4. Every continuous, adapted process is locally bounded since one can take

�n= inf ft2 [0; T ] j jHt¡H0j>ng^T :

Theorem 11.5. (Integration by substitution) (i) If N 2MT, H 2HT(N), G is a bounded
predictable process and M =(H �N), then G2HT(M), HG2HT(N) and (G �M)= (GH �N).

(ii) If N 2MT ;loc, H 2HT ;loc(N), G is a locally bounded predictable process and M = (H �N),
then G2HT ;loc(M), HG2HT ;loc(N) and (GH �N)= (G �M).
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Remark 11.6. Note that (GH �N)= (G �M) is equivalent to
R
0

t
GsHs dNs=

R
0

t
Gs dMs, or more

suggestively, HtdNt=d(
R
0

t
Hs dNs)=dMt.

Proof. First, assume that G is a simple predictable process of the form G=
P

i=1
n Xi1(ti¡1;ti]. ThenZ

0

t

Gs dMs =
X
i=1

n

Xi (Mti¡1^t¡Mti^t)

=
X
i=1

n

Xi

�Z
0

t

1[0;ti¡1]Hs dNs¡
Z
0

t

1[0;ti]Hs dNs

�
=
X
i=1

n

Xi

Z
0

t

1(ti¡1;ti](s)Hs dNs

=
X
i=1

n Z
0

t

Xi1(ti¡1;ti](s)Hs dN

=
Z
0

tX
i=1

n

Xi1(ti¡1;ti](s)Hs dNs=
Z
0

t

GsHs dNs;

where the fourth equality above follows from Lemma 11.2.

a) Let G be a bounded predictable process and C>0 be a deterministic constant such that jGj6C.
Then

E

Z
0

T

Gs
2dhM is6C2E

Z
0

T

dhM is=C2EhM iT =C2EMT
2 <1:

Thus, G 2 HT(M). By a similar argument, GH 2 HT(N). We can find G(n) 2 ET such that
limn!1G

(n)=G in HT(M). Moreover, we can assume that kG(n)k16C (if G(n) does not sat-
isfy this bound, take (G(n)^C)_ (¡C), which still converges to G in HT(M)). Note that

kGH ¡G(n)HkHT(N)
2 = E

Z
0

T¡
GsHs¡Gs

(n)Hs

�
2 dhN is

= E

Z
0

T¡
Gs¡Gs

(n)�2Hs
2dhN is

= E

Z
0

T¡
Gs¡Gs

(n)�2 dhM is= kGs¡Gs(n)kHT(M)
2 ! 0;

where we used the identity hM it=
R
0

t
Hs
2 dhN is, which follows from Theorem 10.3 (f).

Hence, limn!1G
(n)H =GH in HT(N). As a result, we haveZ
0

t

GsHs dNs                                          L2(
)
Z
0

t

Gs
(n)Hs dNs=

Z
Gs
(n) dMs!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !L2(
)

Z
0

t

GsdMs:

b) First, note that Z
0

t

G0dMs=G0

Z
0

t

dMs=
Z
0

t

HsdNs=
Z
0

t

G0Hs dNs:

Hence, by considering G¡G0 instead of G we can assume without loss of generality that G0=0.
Let �n%T be such thatG�n is bounded,N�n2MT , andH1[0;�n]2HT(N �n). Then by Theorem 9.17
we get

Mt
�n=

Z
0

t^�n
Hs dNs=

Z
1[0;�n](s)Hs dNs

�n:
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Therefore, by Theorem 9.17 and part a) we haveZ
0

t^tn
GsdMs =

Z
0

t

1[0;�n](s)Gs dMs
�n

=
Z
0

t

1[0;�n](s)Gs1[0;�n](s)Hs dNs
�n

=
Z
0

t

1[0;�n](s)GsHs dNs
�n=

Z
0

t^tn
GsHs dNs:

We complete the proof by taking the limit n!1. �

12 Continuous semimartingales

Definition 12.1. Let AT denote the space of continuous, adapted processes A= (At)t2[0;T ] of
bounded variation such that A0= 0. Recall that MT ;loc denotes the space of continuous local
martingales M =(Mt)t2[0;T ] such that M0=0. A process Z =(Zt)t2[0;T ] is called a continuous
semimartingale if

Z =Z0+M +A;

where Z0 is an F0-measurable random variable, M 2MT ;loc and A2AT.

Remark 12.2. The decomposition of a semimartingale is unique (up to indistinguishability). If
Z =Z0+M +A=Z0+M 0+A0, then M ¡M 0=A0¡A is a continuous local martingale starting
from zero with bounded variation on [0; t] so it is identically zero.

Example 12.3. An Itô process, i.e., a process of the form Zt= Z0+
R
0

t
Hs dBs+

R
0

t
Ys ds, is a

semimartingale.

Example 12.4. Let N be a square integrable martingale. Then by Theorem 9.1 M =N2¡ hN i
is a martingale. Hence, N2=N0

2+(M ¡N0
2)+ hN i is a semimartingale.

Definition 12.5. Let Z=Z0+M +A be a continuous semimartingale and HT ;loc(Z) denote the
space consisting of H 2HT ;loc(M) such that H 2L1([0; T ]; j�Aj) a.s. The stochastic integral of
H 2HT ;loc(Z) with respect to Z is a continuous semimartingale (H �Z) defined by

(H �Z)t�
Z
0

t

HsdZs :=
Z
0

t

HsdMs+
Z
0

t

Hs dAs;

where the first integral is a stochastic integral and the second is an integral with respect to a
process of bounded variation.

Theorem 12.6. (Integration by substitution) Let Z =Z0+M +A be a continuous semi-
martingale, H 2HT ;loc(Z), G be a locally bounded predictable process and Z 0= (H � Z). Then
G2HT ;loc(Z 0), HG2HT ;loc(Z) and (GH �Z)= (G �Z 0). Equivalently,

Z
0

t

GsHs dZs=
Z
0

t

Gs dZs0; Zt
0=
Z
0

t

Hs dZs:

Proof. We use the integration by substitution theorem for the stochastic integral and a similar
result for the integral with respect to a process of bounded variation. �
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Theorem 12.7. (Integration by parts) If Z=Z0+M +A and Z 0=Z0
0+M 0+A0 are contin-

uous semimartingales, then ZZ 0 is also a semimartingale and

ZtZt
0=Z0Z0

0+
Z
0

t

Zs dZs0+
Z
0

t

Zs
0 dZs+ hM;M 0it:

Proof. See Exercise 1, Sheet 8 for the proof for Z =Z0+M and Z 0=Z0
0+M 0. �

Remark 12.8. For example, for a Brownian motion B we haveZ
0

t

BsdBs=
1
2
(Bt

2¡B02)¡
1
2
hB it=

1
2
(Bt

2¡ t):

On the other hand, for any A2AT we have
R
0

t
AsdAs=

1

2
(At

2¡A02). Moreover, if H;G2HT ;loc,
Mt=

R
0

t
HsdBs and Nt=

R
0

t
GsdBs, then

MtNt=
Z
0

t

Ms dNs+
Z
0

t

NsdMs+ hM;N it=
Z
0

t

MsGs dBs+
Z
0

t

NsHs dBs+
Z
0

t

HsGs ds:

For M 2MT ;loc and A2AT we have

MtAt=
Z
0

t

As dMs+
Z
0

t

MsdAs

and for A;K 2AT we have

AtKt=
Z
0

t

As dKs+
Z
0

t

Ks dAs:

The last integration by parts formula is a straightforward consequence of the definition of the
Riemann-Stieltjes integral.

13 Itô formula

Computing the stochastic integral by following its definition is typically very cumbersome. This
is similar to the usual approach used for the ordinary Riemann or Lebesgue integrals, where the
integral is initially defined through approximations with step functions, but more efficient and
intuitive computational techniques are later introduced. In this lecture, we will prove a fundamental
theorem for stochastic analysis. It shows that the class of continuous semimartingales is closed
under smooth functions.

Theorem 13.1. (Itô's formula) Assume that Z=Z0+M +A is a continuous semimartingale
and f 2C2(R). Then f(Z) is also a semimartingale and

f(Zt)= f(Z0)+
Z
0

t

f 0(Zs) dZs+
1
2

Z
0

t

f 00(Zs) dhM is:

Remark 13.2. Let (Bt)t>0 be a Brownian motion and f 2C2(R). Since hBit= t, for every t> 0
we have

f(Bt)¡ f(B0)=
Z
0

t

f 0(Bs) dBs+
1
2

Z
0

t

f 00(Bs) ds;
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where
R
0

t
f 0(Bs)dBs is the stochastic integral and

R
f 00(Bs)ds is the Lebesgue or Riemann integral.

The term 1

2

R
0

t
f 00(Bs) ds appears because the quadratic variation of the Brownian motion is not

zero. Note that if A is of bounded variation, then

f(At)¡ f(A0)=
Z
0

t

f 0(As) dAs:

Example 13.3. Let f(x)= ex. Then Itô's formula gives

eBt¡ eB0=
Z
0

t

eBs dBs+
1
2

Z
0

t

eBsds

Let Xt=eBt, then Xt=1+
R
0

t
Xs dBs+

1

2

R
0

t
Xsds, or equivalently(

dXt=XtdBt+
1

2
Xtdt

X0=1:

Proof. The integrals in (13.1) are well-defined because the processes f 0(Zs) and f 00(Zs) are con-
tinuous, f 0(Zs)2HT ;loc(M) and f 00(Zs)2L1([0; T ]; hM i).

Step 1 . Let Z be a bounded semimartingale and f be a polynomial. By linearity of both sides
of (13.1), it suffices to consider the case when f(x)=xn. We will show this formula by induction
on n. For n=0, the thesis is obvious. Assume that (13.1) holds for f(x)=xn, we will show it for
g(x)=xf(x).

By induction hypothesis f(Zt) is a semimartingale with the decomposition

f(Zt) = f(Z0)+
Z
0

t

f 0(Zs) dZs+
1
2

Z
0

t

f 00(Zs) dhM is

= f(Z0)+
Z
0

t

f 0(Zs) dMs+
�Z

0

t

f 0(Zs) dAs+
1
2

Z
0

t

f 00(Zs) dhM is
�
:

Using integration by parts we obtain

g(Zt)=Zt f(Zt)=Z0 f(Z0)+
Z
0

t

Zs df(Zs)+
Z
0

t

f(Zs) dZs+
�Z

f 0(Zs) dMs;M

�
t

:

Using integration by substitution we obtainZ
0

t

Zs df(Zs)=
Z
0

t
�
Zs f 0(Zs) dZs+

1
2
Zs f 00(Zs) dhM is

�
:

By Theorem 10.3 (f) we have�Z
f 0(Zs) dMs;M

�
t

=
Z
0

t

f 0(Zs) dhM is :

Applying the above identities and noting that g 0(x)= f(x)+xf 0(x) and g 00(x)= 2f 0(x)+xf 00(x)
we arrive at

g(Zt)= g(Z0)+
Z
0

t

g 0(Zt) dZt+
1
2

Z
0

t

g 00(Zt) dhM is:

This proves the induction step.
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Step 2 . Let Z be a bounded semimartingale and f 2 C2(R) be arbitrary. Denote by C > 0 a
deterministic constant such that jZtj6C. There exists a sequence of polynomials fn such that

jfn(x)¡ f(x)j; jfn0(x)¡ f 0(x)j; jfn00(x)¡ f 00(x)j6
1
n

for x2 [¡C;C]:

Moreover, letting K = supx2[¡C;C] (jf 0(x)j _ jf 00(x)j), we have

jfn0(Zs)j6 sup
x2[¡C;C]

jfn0(x)j6 1+K; jfn00(Zs)j6 sup
x2[¡C;C]

jfn00(x)j6 1+K:

Hence, from Lebesgue's dominated convergence theorem (for ordinary and stochastic integrals),

f(Zt)= lim
n!1

fn(Zt)

= lim
n!1

�
fn(Z0)+

Z
0

t

fn
0(Zs) dZs+

1
2

Z
0

t

fn
00(Zs) dhM is

�
=f(Z0)+

Z
0

t

f 0(Zs) dZs+
1
2

Z
0

t

f 00(Zs) dhM is:

Step 3 . Let Z=Z0+M+A be a continuous semimartingale such that Z0 is bounded and f 2C2(R).
In this case, we define

�n := inf ft > 0 j jZtj>ng^T :

Since Z0 is bounded and Z is continuous, limn!1 �n=T a.s. Moreover, Z�n :=Z0+M�n+A�n is
a continuous bounded semimartingale and limn!1Zt

�n=Zt a.s. By Step 2, (13.1) holds for Z(n)

and by Theorem 9.17 and Theorem 10.3 (e) we have

f(Zt
�n)=f(Z0)+

Z
0

t

f 0(Zs
�n) dZs

�n+ 1
2

Z
0

t

f 00(Zs
�n) dhM�nis

=f(Z0)+
Z
0

t

1[0;�n](s)f
0(Zs

�n) dZs+
1
2

Z
0

t

1[0;�n](s)f
00(Zs

�n) dhM is

=f(Z0)+
Z
0

t

1[0;�n](s)f
0(Zs) dZs+

1
2

Z
0

t

1[0;�n](s)f
00(Zs) dhM is

=f(Z0)+
Z
0

t^�n
f 0(Zs) dZs+

1
2

Z
0

t^�n
f 00(Zs) dhM is:

Taking the limit n!1 we obtained (13.1).

Step 4 . To prove (13.1) in the general case let Z0
(n) := (Z0^n)_ (¡n) and Z(n) :=Z0

(n)+M +A.
Note that

R
0

t
XsdZs=

R
0

t
XsdZs

(n). Since we already know that (13.1) holds when Z0 is bounded,

f(Zt
(n))= f(Z0

(n))+
Z
0

t

f 0(Zs
(n)) dZs+

1
2

Z
0

t

f 00(Zs
(n)) dhM is:

We shall prove convergence as n!1 of every term appearing in the above equation. It is evident
that limn!1f(Zt

(n))= f(Zt) a.s (and similarly for f 0 and f 00). We observe that����f 0(Zs(n))����6 sup
n2N+

����f 0(Zs(n))���� :=Ys:

The process Y is predictable as the supremum of predictable processes, and

sup
s6t
jZs

(n)j6 jZ0j+ sup
s6t
jMsj+sup

s6t
jAsj<1 a:s:
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Hence, from the continuity of f 0 we infer that sups6t jYsj<1 a.s. and Y 2HT ;loc(M). By the
dominated convergence theorem for stochastic integrals,

lim
n!1

Z
0

t

f 0(Zs
(n)) dMs=

Z
0

t

f 0(Zs) dMs in probability:

Moreover, by the dominated convergence theorem for ordinary integrals,

lim
n!1

Z
0

t

f 0(Zs
(n)) dAs=

Z
0

t

f 0(Zs) dAs a:s:

Similarly, supn sups6t jf 00(Zs
(n))j<1 a.s., and again applying the dominated convergence theorem

for ordinary integrals, we get

lim
n!1

Z
0

t

f 00(Zs
(n)) dhM is=

Z
0

t

f 00(Zs) dhM is a.s.

To complete the proof we pass to the limit n!1 in (13.3). �

In a similar way as in the one-dimensional case, we can prove the multidimensional version of Itô's
theorem.

Theorem 13.4. Assume that f :R>�Rd!R is a function that is C1 in R> and C2 in Rd

and Z=(Z1; : : : ; Zd), where Z i=Z0
i+M i+Ai are continuous semimartingales for i2f1; : : : ; dg.

Then (f(t; Zt))t>0 is a semimartingale and

f(t; Zt) = f(0; Z0)+
Z
0

t@f
@s
(s; Zs) ds+

X
i=1

d Z
0

t @f
@xi

(s; Zs) dZsi

+1
2

X
i;j=1

d Z
0

t @2f

@xi@xj
(s; Zs) dhM i;M jis:

Example 13.5. Let B be a Brownian motion. The application of Itô's formula yields

Xt = exp
�
Bt¡

t
2

�
= exp(B0)¡

1
2

Z
0

t

exp
�
Bs¡

s
2

�
ds+

Z
0

t

exp
�
Bs¡

s
2

�
dBs+

1
2

Z
0

t

exp
�
Bs¡

s
2

�
ds

= 1+
Z
0

t

exp
�
Bs¡

s
2

�
dBs=

Z
0

t

XsdBs:

That is, X satisfies the following stochastic differential equation�
dXt=Xt dBt

X0=1:

Note that for all T > 0 we have

E

�Z
0

T

Xs
2ds
�
=
Z
0

T

E(exp(2Bs¡ s)) ds<1:

Hence, X 2HT and since X=
R
XsdBs we conclude that X 2MT is a square integrable martingale.

We call X the exponential martingale associated with B.
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Example 13.6. Let B = (B1; : : : ; Bd) be a vector of d independent Brownian motions and f 2
C2(Rd). Note that for i=/ j we have

E(Bt
iBt

j jFs)=E(Bt
ijFs)E(Bt

j jFs)=Bs
iBs

j:

Thus, the process (Bt
iBt

j ¡ t�ij)t>0 is a martingale. This proves that hBi; Bjit = t �ij and by
multidimensional Itô's formula

f(Bt)= f(B0)+
X
i=1

d Z
0

t @f

@xi
(Bs) dBsi+

1
2

Z
0

t

(�f)(Bs) ds;

where � is the Laplace operator.

14 Stochastic differential equations

Definition 14.1. Let (
;F ; P ) be a probability space, (Ft)t>0 a filtration such that F0 contains
all null events and (Bt)t>0 a Brownian motion adapted to (Ft)t>0 such that (Bt+s¡Bt)s>0 is
independent of Ft for all t> 0. Assume that b; � : [0;1)�R!R are continuous functions, and
x is an F0-measurable random variable. We say that the process X = (Xt)t2[0;T ] is a strong
solution of the stochastic differential equation (SDE)

dXt= b(t;Xt) dt+�(t;Xt) dBt; X0=x; (14.1)

if X is a continuous and adapted process such that

Xt=x+
Z
0

t

b(s;Xs) ds+
Z
0

t

�(s;Xs) dBs; t2 [0; T ]: (14.2)

Remark 14.2. The assumption that b and � are continuous functions is not necessary and it is
possible to study more general stochastic differential equations. Note that the continuity of b and
� automatically implies the measurability and local boundedness of the processes b(s;Xs) and �(s;
Xs), which guarantees that the integrals appearing in (14.2) are well defined.

Remark 14.3. The process X solving equation (14.1) is called a diffusion with the diffusion
coefficient � and the drift coefficient b.

Remark 14.4. Note that the Itô formula can be equivalently written as an SDE

df(t; Zt)=
@f

@t
(t; Zt) dt+

X
i=1

d
@f

@xi
(t; Zt) dZti+

1
2

X
i;j=1

d
@2f

@xi@xj
(t; Zt) dhM i;M jit:

Example 14.5. The Black-Scholes SDE

dXt= �Xtdt+�Xt dBt

models the dynamics of a financial asset, such as a stock, under the assumptions of continuous
trading and no arbitrage.

� Xt is the price of the asset at time t.

� �2R is the drift coefficient (representing the expected return rate).

� � > 0 is the volatility coefficient (measuring the asset's randomness or risk).
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Note that in financial markets it is natural to assume that the changes in price are proportional
to the current price.

Assumption 14.6. The functions b and � (i) have sublinear growth at infinity and (ii) are
globally Lipschitz, that is,

(i). jb(t; x)j6L(1+ jxj); j�(t; x)j6L(1+ jxj),

(ii). jb(t; x)¡ b(t; y)j6Ljx¡ y j; j�(t; x)¡�(t; y)j6Ljx¡ y j

for all x; y 2R, t2 [0; T ]. In addition, (iii) x is a square-integrable random variable.

Example 14.7. Let b(t; x)= 2 x
p

and �(t; x)= 0. The function b is not Lipschitz continuous at
x=0. The uniqueness of solutions fails since the functions

Xt=0 and Xt= t2

are both solutions of dXt=2 jXtj
p

dt with X0=0.

Example 14.8. Let b(t; x) = x2 and �(t; x) = 0. The function b is smooth but it is not globally
Lipschitz and grows faster than linearly. For any initial value x> 0, the function

Xt=
1

1

x
¡ t

solves dXt=Xt
2dt with X0=x and it can be shown that there is no other solution. However, the

function Xt blows up as t! 1/x, so the solution does not exist for all time t > 0.

Definition 14.9. For continuous adapted processes X the process M(X) = (Mt(X))t2[0;T ] is
defined by

Mt(X) :=x+
Z
0

t

b(s;Xs) ds+
Z
0

t

�(s;Xs) dBs:

Observe that a process X is a solution of the stochastic differential equation (14.1) if and only if
it is a fixed point of the map M introduced above, that is, M(X)=X .

Definition 14.10. Let ST denote the Banach space of continuous and adapted processes (Xt)t2[0;T ]
such that

kXkST :=
�
E
�

sup
s2[0;T ]

Xs
2
��

1/2
<1:

Remark 14.11. To prove that the space ST is complete one uses the fact that uniform convergence
preserves continuity.

Lemma 14.12. The map M :ST!ST is well-defined. Moreover, for all t2 [0; T ] and X;Y 2ST
we have

kM(X)¡M(Y )kSt2 6C
Z
0

t

kX ¡Y kSu2 du

with C =2L2(T +4).
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Proof. Using the elementary inequality (a+ b)26 2a2+2b2 we obtain

(Ms(X)¡Ms(Y ))2 =
�Z

0

s

(b(r;Xr)¡ b(r; Yr)) dr+
Z
0

s

(�(r;Xr)¡�(r; Yr)) dBr
�
2

6 2
�Z

0

s

(b(r;Xr)¡ b(r; Yr)) dr
�
2

+2
�Z

0

s

(�(r;Xr)¡�(r; Yr)) dBr
�
2

:

Using the Cauchy-Schwartz inequality and Assumption 14.6 (ii) we estimate

E

"
sup
s2[0;t]

�Z
0

s

(b(r;Xr)¡ b(r; Yr)) dr
�
2
#
6 tE

�Z
0

t

jb(r;Xr)¡ b(r; Yr)j2dr
�

6 tL2E

�Z
0

t

jXr¡Yr j2 dr
�
:

Similarly, by the Doob inequality stated in Theorem 6.14 (b), the Itô isometry and Assumption 14.6
(ii) we obtain

E

"
sup
s2[0;t]

�Z
0

s

(�(r;Xr)¡�(r; Yr)) dBr
�
2
#
6 4E

�Z
0

t

(�(r;Xr)¡�(r; Yr)) dBr

�
2

= 4E
�Z

0

t

(�(r;Xr)¡�(r; Yr))2dr
�

6 4L2E
�Z

0

t

jXr¡Yrj2dr
�
:

This proves

E
�

sup
s2[0;t]

(Ms(X)¡Ms(Y ))2
�
6 C

Z
0

t

E
�

sup
s2[0;u]

(Xs¡Ys)2
�
du;

which implies the desired bound. �

Lemma 14.13. In the setting of the above lemma we have

At
(n) :=









M � : : : �M|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
n

(X)¡M � : : : �M|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
n

(Y )









St

2
6 Cntn

n!
kX ¡Y kSt

2 :

Proof. By Lemma 14.12 it holds that

Atn
(n) 6 C

Z
0

tn

Atn¡1
(n¡1) dtn¡16C2

Z
0

tn
Z
0

tn¡1

Atn¡2
(n¡2) dtn¡2dtn¡1

6 Cn

Z
0

tn
Z
0

tn¡1

: : :

Z
0

t1

At0
(0) dt0: : :dtn¡2dtn¡1

6 Atn
(0)Cn

Z
0

tn
Z
0

tn¡1

: : :

Z
0

t1

dt0: : :dtn¡2dtn¡1=Atn
(0)Cn tn

n

n!
;

which proves the claim. �

Theorem 14.14. There exists exactly one (up to indistinguishability) solution X of the stochastic
differential equation (14.1). Moreover, X 2ST.
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Proof of existence. We use Picard's iteration method, that is, we define recursively

X(0)=0; X(n+1)=M(X(n)); n2N0:

Note that

Xt
(1)=Mt(0)=x+

Z
0

t

b(s; 0) ds+
Z
0

t

�(s; 0) dBs:

Hence, by (a+ b+ c)263a2+3b2+3c2, the Doob inequality, the Itô isometry and Assumption 14.6
(i) and (iii) we obtain

kX(1)¡X(0)kST2 6 3Ex2+3E

"
sup

t2[0;T ]

�Z
0

t

b(s; 0) ds
�
2
#
+3E

"
sup

t2[0;T ]

�Z
0

t

�(s; 0) dBs

�
2
#

6 3Ex2+3L2T 2+ 12E
�Z

0

T

�(s; 0)2ds
�
6 3Ex2+3L2T (T +4)<1:

By Lemma 14.13 we have

X
n=0

1

kX(n+1)¡X(n)kST 6 kX(1)¡X(0)kST
X
n=0

1 �
CnT n

n!

�
1/2

<1:

Hence, the sequence (X(n))n2N0 is Cauchy in the norm k�kST . We denote by X 2ST its limit. By
Lemma 14.12 we have

kM(X)¡M(Y )kST2 6CT kX ¡Y kST ;2

which implies that the map M is continuous. Hence,

M(X)= lim
n!1

M(X(n))= lim
n!1

X(n+1)=X:

Consequently, X 2ST is a solution of (14.1). �

Remark 14.15. If X;Y 2ST are such that M(X)=X and M(Y )=Y , then by Lemma 14.13 we
have

kX ¡Y kST2 6 CnT n

n!
kX ¡Y kST2 :

Taking n 2N+ big enough we conclude kX ¡ Y kST2 6 0, which implies that X = Y . This proves
uniqueness of solutions of (14.1) in ST . However, the uniqueness claimed in Theorem 14.14 is more
general.

Proof of uniqueness. Suppose that X;Y are continuous adapted processes solving (14.1). Define

�m := inf ft> 0 j jXt¡xj _ jYt¡xj>mg; m2N+:

Note that X�m; Y �m2ST since jXt
�m¡ xj _ jYt�m¡xj6m and Ex2<1 by Assumption 14.6 (iii).

Define the map

Mt
(m)(X) :=x+

Z
0

t

1[0;�m](s) b(s;Xs) ds+
Z
0

t

1[0;�m](s)�(s;Xs) dBs:
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Using Theorem 9.17 and the fact that X and Y are solutions of (14.1) we obtain

Mt
(m)(X�m) = x+

Z
0

t

1[0;�m](s) b(s;Xs) ds+
Z
0

t

1[0;�m](s)�(s;Xs) dBs

= x+
Z
0

t^�m
b(s;Xs) ds+

Z
0

t^�m
�(s;Xs) dBs=Xt

�m

and the same for Y �m. We conclude that M (m)(X�m) =X�m and M (m)(Y �m) = Y �m. The map
M (m) satisfies the bounds stated in Lemmas 14.12 and 14.13 as can be easily checked by following
the proofs of these lemmas. Hence, by the argument from Remark 14.15 we have X�m= Y �m for
all m2N+, which implies that X =Y . �

15 Girsanov theorem

We assume that (
;F ;P) is a fixed probability space. We will construct other probability measure
on (
; F) under which a Brownian motion with drift has the same distribution as a standard
Brownian motion.

Notation 15.1. By EX we always mean the expectation with respect to P, while the expectation
of X with respect to another measure Q will be denoted by EQX. Note that if Q(A)=E(1AZ)
for some Z > 0 such that EZ =1, then EQX =E(XZ).

We begin with the following motivating example.

Example 15.2. Let X1;X2;:::;Xn be independent N (0;1)-random variables and let �1;:::; �n2R
be deterministic. We define a new measure Qn on (
;F) by

Qn(A)=E(1AZn) for all A2F ; where Zn := exp

 X
i=1

n

�iXi¡
1
2

X
i=1

n

�i
2

!
:

Note that

Qn(
)=EZn=
Y
i=1

n

E

�
exp
�
�iXi¡

1
2
�i
2

��
=1:

Hence, Qn is a probability measure on (
;F). Moreover, for any Borel set A2B(Rn) we have

Qn((X1; : : : ; Xn)2A) = 1
(2�)n/2

Z
A

exp

 X
i=1

n

�ixi¡
1
2

X
i=1

n

�i
2

!
exp

 
¡1
2

X
i=1

n

xi
2

!
dx1: : :dxn

= 1
(2�)n/2

Z
A

exp

 
¡1
2

X
i=1

n

(xi¡ �i)2
!
dx1: : :dxn:

In consequence, with respect to Qn, Xi¡ �i are independent N (0; 1)-random variables. Defining
Sk=X1+ : : :+Xk, we see that with respect to Qn, the random variables 

Sk¡
X
i=1

k

�i

!
k2f1; : : : ng

are sums of independent standard normal variables, i.e., they have the same distribution as
(Sk)k2f1; : : : ng with respect to P. In what follows, we show a similar fact in the continuous case,
where Sk is replaced by a Brownian motion, and the sums

P
i=1
k �i are replaced by the inte-

gral
R
0

t
Hsds.
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Assume that T <1 and H 2HT ;loc. Then the process Mt=
R
Hs dBs is a local martingale and

hM it=
R
0

t
Hs
2ds. Let

Zt := exp
�
Mt¡

1
2
hM it

�
= exp

�Z
0

t

HsdBs¡
1
2

Z
0

t

Hs
2ds

�
:

Then the process Z =(Zt)t2[0;T ] is a local martingale. Actually, the following is true.

Lemma 15.3. If M 2MT ;loc, then Z =
¡
exp
¡
Mt¡ 1

2
hM it

��
t2[0;T ]2MT ;loc.

Proof. Applying the Itô formula to the semimartingale Yt=Mt¡ 1

2
hM it, we obtain

Zt=Z0+
Z
0

t

ZsdYs+
1
2

Z
0

t

ZsdhM is=Z0+
Z
0

t

ZsdMs: �

Lemma 15.4. Let M 2MT ;loc: a) If M is bounded, then M is a martingale. b) If M is non-
negative, then M is a supermartingale.

Proof. Let �n%T be the reducing sequence for M . Fix 06 s< t6T and A2Fs.

a) If M is bounded, then by Lebesgue's dominated convergence theorem,

E[Mt1A] =E
h
lim
n!1

Mt
�n1A

i
= lim
n!1

E[Mt
�n1A] = lim

n!1
E[Ms

�n1A] =E[Ms1A];

hence Ms=E(MtjFs) and M is a martingale.

b) If M is non-negative, then

E[Ms1A] = lim
n!1

E[Ms1A\f�n>sg] = lim
n!1

E[Ms
�n1A\f�n>sg]

= lim
n!1

E[Mt
�n1A\f�n>sg]>E

h
lim
n!1

Mt
�n1A\f�n>sg

i
=E[Mt1A];

where we used Lebesgue's monotone convergence theorem, the fact that M�n is a martingale,
A\f�n>sg2Fs and Fatou's lemma. Hence, Ms>E(MtjFs). �

Lemma 15.5. Let M 2MT ;loc. The process

Z =(exp(Mt¡hM it/2))t2[0;T ]

is a martingale if and only if EZT =1.

Proof. If Z is a martingale, then EZT =EZ0=1. It remains to prove that if EZT =1, then Z is
a martingale. Since Z is a non-negative local martingale, by Lemma 15.4, it is a supermartingale.
Thus, for all 06 s6 t6T we have Zs>E(ZtjFs) a.s. Consequently, 1=EZ0>EZt>EZT=1 and
EZt=1. As a result,

E(Zt¡E(ZT jFt))=EZt¡EZT =0;

and thus Zt=E(ZT jFt) almost surely. �
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Proposition 15.6. Let (Xt)t>0 be a continuous process such that X0=0 a.s. and for all �2R

U� :=
�
ei�Xt+

1
2
�2t
�
t>0

is a complex martingale. Then X is a Brownian motion.

Proof. The martingale relation

E
�
ei�Xt+

1
2
�2t
������Fs�=E(Ut�j Fs)=Us

�=ei�Xs+
1
2
�2s

implies that, for every �2R,

E(ei�(Xt¡Xs)j Fs)= e¡
1
2
�2(t¡s)

:

Taking the expectation of both sides of the above equality we obtain that the increment Xt¡Xs

is N (0; t¡ s). Moreover, by Lemma 15.7 the above equality implies that Xt¡Xs is independent
of Fs. Therefore, all conditions of Def. 3.1 are satisfied. �

Lemma 15.7. Let G �F be a sub-�-algebra and X a random variable such that for every �2R

E[ei�Xj G] =E[ei�X] a.s.

Then X is independent of G.

Proof. We have to prove that every G-measurable real random variable Y is independent of X.
The characteristic function of the pair (X;Y ) computed at �=(�; �) is equal to

E[ei�Xei�Y ] =E[E(ei�X jG)ei�Y ] =E[ei�X]E[ei�Y ]:

This implies the claim. �

Theorem 15.8. (Girsanov) Let 0 < T <1 and H 2 HT ;loc, that is, H is predictable andR
0

T
Hs
2ds<1 a.s. Define a stochastic process Z =(Zt)t2[0;T ] by

Zt= exp
�Z

0

t

Hs dBs¡
1
2

Z
0

t

Hs
2ds

�
:

If EZT =1, that is, Z is a martingale, then the process

B~ =
�
Bt¡

Z
0

t

Hs ds
�
t2[0;T ]

is a Brownian motion in the modified probability space (
; F ;QT), where the measure QT is
defined by QT(A)=E(1AZT) for A2F.

Proof. The random variable ZT is non-negative and EZT =1. Thus, QT is a probability measure.
Note also that if P(A)= 0, then QT(A)= 0. Hence, events that occur P-almost surely also occur
QT -almost surely. The process B~ is continuous, adapted to Ft, and B~0=0. By Proposition 15.6
it is therefore sufficient to show that for all �2R, the process

U = exp
�
i�B~t+

1
2
�2 t

�
t2[0;T ]
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is a martingale with respect to QT . Note that

UtZt = exp
�
i�B~t+

1
2
�2t

�
exp

�Z
0

t

Hs dBs¡
1
2

Z
0

t

Hs
2ds

�
= exp

�
i�Bt+

Z
0

t

Hs dBs¡
1
2

Z
0

t

(2i�Hs¡�2+Hs
2) ds

�
= exp

�Z
0

t

(i�+Hs) dBs¡
1
2

Z
0

t

(i�+Hs)2ds
�
= exp

�
Nt¡

1
2
hN it

�
where N =

R
(i�+Hs) dBs2MT ;loc. Thus, the process UZ is a local martingale with respect to

P. Hence, there exist stopping times �n%T such that U�nZ�n is a martingale. For every n2N+

and every bounded stopping time � we have

EQTU0 = E(U0ZT)=E(U0E(ZT jF0))=E(U0Z0)=E(U�n^�Z�n^�)
= E(U�n^�E(ZT jF�n^�))=E(U�n^�ZT)=EQTU�n^� ;

where we used Remark 9.3 and the fact that Z and U�nZ�n are martingales. By Remark 9.3 we
conclude that U�n is a martingale with respect toQT . This implies that U is aQT -local martingale.
Since U is bounded by Lemma 15.4 it is a martingale. �

Theorem 15.9. Let H 2HT ;loc. Define M =(Mt)t2[0;T ] and Z =(Zt)t2[0;T ] by

Mt=
Z
0

t

Hs dBs; Zt= exp
�
Mt¡

1
2
hMtit

�
; t2 [0; T ]:

The process Z is a martingale if any of the following conditions is satisfied:

(i). E
�
e
1
2
hM iT

�
=E

�
e
1
2

R
0
T jHsj2ds

�
<+1 (the Novikov criterion).

(ii). M is a martingale, supt2[0;T ]E(Mt
2)<1 and E

�
e
1
2
MT

�
<+1 (the Kazamaki criterion).

(iii). There exists �> 0 such that supt2[0;T ]E(e�jHtj2)<1.

Proof. See Theorem 12.2 and Corollary 12.1 in [Bal17]. �

Example 15.10. Let X =(Xt)t2[0;T ] be a Brownian motion, �2R and

Zt= exp
�
�

Z
0

t

Xs dXs¡
�2

2

Z
0

t

Xs
2ds

�
:

Using the fact that Xt is N (0; t) it is easy to see that E(eaXt
2
)=(1¡2at)¡1/2 for all a< 1

2t
. Hence,

E(e��2Xt
2
)= 1

1¡ 2��2t 6
1

1¡ 2��2T

and Theorem 15.9 (iii) applied with �2
¡
0; 1

2�2T

�
implies that Z is a martingale. We can therefore

consider on F the probability QT with density ZT with respect to P. The Girsanov theorem states
that

Bt=Xt¡�
Z
0

t

Xs ds
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is a Brownian motion in the probability space (
;F ;QT). Thus, under QT the process (X)t2[0;T ]
solves the following SDE

dXt=�Xtdt+dBt:

For �< 0 the solution of the above equation is known as Ornstein-Uhlenbeck process.

16 Martingale representation theorem

Let B be a Brownian motion adapted to a filtration (Ft)t>0 and such that (Bs+t¡ Bt)s>0 is
independent of Ft for all t> 0. We have seen that the stochastic integral of H 2HT with respect
to B is a square integrable martingale. In this section, we prove that the converse is also true for
a particular choice of the filtration.

Theorem 16.1. Let B be a Brownian motion and (Ft)t>0 be the natural filtration of B augmented
with the events of probability zero, which was introduced in Remark 8.2. Then every square
integrable random variable Z measurable with respect to FT for some T > 0 is of the form

Z = c+
Z
0

T

Hs dBs;

where c2R and H 2HT. Moreover, the above representation is unique.

Proof. The uniqueness is obvious, as c is determined by c=E[Z] whereas, if H(1) and H(2) were
two processes in HT satisfying (16.1), then from the relation

Z
0

T¡
Hs
(1)¡Hs

(2)�dBs=0

we have immediately, by the isometry property of the stochastic integral, that

E

�Z
0

T����Hs
(1)¡Hs

(2)
����2ds�=0

and therefore Hs
(1)=Hs

(2) for almost every s2 [0; T ] a.s. For the proof of the existence see The-
orem 12.4 in [Bal17]. �

Theorem 16.2. Let B and (Ft)t>0 be as in Theorem 16.1 and (Mt)t2[0;T ] be a square integrable
martingale adapted to (Ft)t>0. Then there exist a unique process H 2HT and a constant c2R
such that

Mt= c+
Z
0

t

Hs dBs a.s.

for all t2 [0; T ]. In particular, (Mt)t2[0;T ] admits a continuous modification, that is there exists
a continuous process (M~ t)t2[0;T ] such that Mt=M~ t a.s. for each t2 [0; T ].

Proof. AsMT is square integrable, by Theorem 16.1 there exists a unique processH 2HT such that

MT = c+
Z
0

T

HsdBs
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and therefore

Mt=E(MT jFt)= c+
Z
0

t

Hs dBs a.s.;

which finishes the proof. �

17 PDE problems and diffusion processes

In this section, we discuss representations of solutions of elliptic and parabolic PDEs as expecta-
tions of functionals of diffusion processes.

Example 17.1. Suppose that u solves the heat equation

8<: @u
@t

= �u on R>�Rd;

u(0; �)= f on Rd:

Let B=(B1; : : : ;Bd) be a vector of independent Brownian motions. The probability density of Bt

coincides with x 7! 1

(2�t)d/2
exp
�
¡ jxj

2

2t

�
. Thus, the probability density of 2

p
Bt coincides with the

fundamental solution of the heat equation y 7!K(t; y)= 1

(4�t)d/2
exp
�
¡ jyj

2

4t

�
and

u(t; x)=
Z
Rd

f(x+ y)K(t; y) dy=E(f(x+ 2
p

Bt))=Ex(f( 2
p

Bt)):

We would like to find a relation between PDEs and stochastic processes solving a multidimensional
stochastic differential equation

dXt
i= bi(Xt) dt+

X
j=1

m

�ij(Xt) dBt
j ; i2f1; : : : ;mg;

with continuous b:Rd!Rd and � :Rd!Rd�m. We assume these functions do not depend on time.
Using the matrix notation we write equivalently

dXt= b(Xt) dt+�(Xt) dBt: (17.1)

Notation 17.2. Given a solution Xx to (17.1) with a deterministic initial condition x2Rd we
write Ex(f(X)) :=E(f(Xx)).

Definition 17.3. The generator of the diffusion govern by (17.1) is the differential operator

L := 1
2

X
i;j=1

d

aij @i@j+
X
i=1

d

bi@i;

where a=��T, that is aij=
P

k=1
m �ik�jk.
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Example 17.4. Let m= d, b= 0 and � = 2
p

1, where 1 is the identity matrix of size d. Then
L=� is the Laplacian and X = 2

p
B.

Proposition 17.5. Let x 2Rd and X = (X1; : : : ; Xd) be a solution to (17.1). Then for every
function u:R>�Rd!R that is C1 in R> and C2 in Rd, the process

t 7!Mt
u=u(t;Xt)¡u(0; X0)¡

Z
0

t
�
@u

@s
+Lu

�
(s;Xs)ds

is a continuous local martingale.

Proof. The result follows by a standard application of the Itô formula. �

Definition 17.6. (Uniformly elliptic) Given a domain U �Rd we say that a :U�!Rd�d is
uniformly elliptic if there is a constant c> 0 such that for all � 2Rd and x2U�, we have

�Ta(x)�> cj� j2;

where U� denotes the closure.

Remark 17.7. Equivalently, the smallest eigenvalue of a is bounded away from 0.

In what follows, we assume that b :Rd!Rd and � :Rd!Rd�m are globally Lipschitz such that
a= ��T is uniformly elliptic. Note that since b; � do not depend on time, they also satisfy the
sublinear growth condition from Assumption 14.6. Consequently, the SDE (17.1) has a unique
solution.

17.1 Dirichlet�Poisson problem

We first study the Dirichlet�Poisson problem. Let U �Rd be a domain, f 2Cb(U) and g2Cb(@U).
We want to find u2C2(U)\C(U�) such that

�
¡Lu= f on U ;

u= g on @U:

If f =0, this is called the Dirichlet problem and if g=0, this is called the Poisson problem.

It is possible to prove existence of a solution to the Dirichlet-Poisson using the diffusion process
govern by (17.1). However, we shall prove a slightly weaker result. Assuming that we have a solution
of the PDE we will show that it is represented by a certain formula involving the diffusion process.
We first note the following theorem without proof.

Theorem 17.8. Let U be a non-empty, connected, bounded, open subset of Rd with a smooth
boundary. Then for every Hölder continuous f :U�!R and continuous g:@U!R, the Dirichlet-
Poisson process has a solution u2C2(U)\C(U�).

We now state the main theorem of this section.
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Theorem 17.9. Let U, f and g be as in the previous theorem, u2C 2(U)\C(U�) be a solution to
the Dirichlet-Poisson problem and X be a solution to (17.1). Define the stopping time

�U = inf ft> 0 jXt2/ U g:

Then E�U <1 and

u(x)=Ex

�
g(X�U)+

Z
0

�U

f(Xs) ds
�
:

Proof. Proposition 17.5 applies to functions defined on all of Rn, while u is just defined on U . To
circumvent this problem, we define

Un=
�
y 2U

��������dist(y; @U)> 1
n

�
; �n= inf ft> 0 jXt2/ Ung;

and pick un2Cb2(Rd) such that ujUn=unjUn. Recalling our previous notation, let

Mt
n=(Mun)t

�n=un(Xt^�n)¡un(X0)¡
Z
0

t^�n
Lun(Xs) ds:

The process Mt
n is a bounded continuous local martingale. Hence, it is a true martingale. For

x2U and n large enough, the martingale property implies

u(x)=un(x)=E

�
u(Xt^�n)¡

Z
0

t^�n
Lu(Xs) ds

�
=E

�
u(Xt^�n)+

Z
0

t^�n
f(Xs) ds

�
:

To complete the proof, it remains to demonstrate that the limit n!1 can be taken on both sides
of the identity above.

We first show that E�U<1. Note that E�U depends only on the process X and does not involve f
or g. So we can take f =1 and g=0, and let v be a solution of the corresponding Dirichlet�Poisson
problem. Then we have

E(t^ �n)=E

�
¡
Z
0

t^�n
Lv(Xs) ds

�
= v(x)¡E(v(Xt^�n))6 2kvkL1:

Since t^ �n% �U a.s. as n!1 and t!1, by monotone convergence theorem we obtain

E(�U)= lim
t!1

lim
n!1

E(t^ �n)6 2kvkL1<1:

Using

E

�Z
0

1
1[0;�U](s) jf(Xs)j ds

�
6 kf kL1E(�U)<1;

by the dominated convergence theorem, we conclude that

lim
t!1

lim
n!1

E

�Z
0

t^�n
f(Xs) ds

�
= lim
t!1

lim
n!1

E

�Z
0

1
1[0;t^�n](s)f(Xs) ds

�
=E

�Z
0

�U

f(Xs) ds
�
:

Since u is continuous on U�, we also have

lim
t!1

lim
n!1

E(u(Xt^�n))=E(u(X�U))=E(g(X�U)):
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This finishes the proof. �

17.2 Cauchy problem for parabolic equations

We can also use SDEs to solve the Cauchy problem for parabolic equations. For f 2Cb2(Rd), we
want to find u:R>�Rd!R that is C1 in R> and C2 in Rd such that8<: @u

@t
= Lu on R>�Rd;

u(0; �)= f on Rd:

Theorem 17.10. For every f 2Cb2(Rd), there exists a solution u2Cb
1;2(R>�Rd) to the Cauchy

problem.

Theorem 17.11. Let f 2Cb2(Rd) and u2Cb
1;2(R>�Rd) be a solution to the Cauchy problem

and X be a solution to (17.1). Then for 06 s6 t we have

Ex(f(Xt)j Fs)=u(t¡ s;Xs):

In particular,

u(t; x)=Ex(f(Xt)):

Proof. Let g(s; x)=u(t¡ s; x). Then�
@g

@s
+Lg

�
(s; x)=¡ @

@t
u(t¡ s; x)+Lu(t¡ s; x)= 0:

Hence, by Proposition 17.5, g(s;Xs) is a bounded martingale, and

u(t¡ s;Xs)= g(s;Xs)=E(g(t;Xt)j Fs)=E(u(0; Xt)j Fs)=E(f(Xt)j Fs);

which proves the desired identity. �

The following generalization of the identity from the previous theorem is known as the Feynman�
Kac formula.

Theorem 17.12. (Feynman�Kac formula) Let f 2Cb2(Rd) and V 2Cb(Rd) and suppose that
u2Cb

1;2(R>�Rd) satisfies 8<: @u
@t

=Lu+Vu on R>�Rd;

u(0; �)= f on Rd;

where (Vu)(t; x)=V (x)u(t; x) for all t> 0 and x2Rd. Then for all t> 0 and x2Rd we have

u(t; x)=Ex

�
f(Xt) exp

�Z
0

t

V (Xr) dr
��

;

where X is the solution to (17.1).
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Proof. Let Zs= exp(
R
0

s
V (Xr) dr). For s2 [0; t], set

Ms=u(t¡ s;Xs)Zs= f(s;Xs; Zs); f(s; x; z)=u(t¡ s; x)z:

Let us show that M is a martingale on [0; t]. Indeed, by the Itô formula we have

dMs = @f
@s
(s;Xs; Zs) ds+

X
i=1

d
@f
@xi

(s;Xs; Zs) dXs
i+ @f

@z
(s;Xs; Zs) dZs

+1
2

X
i;j=1

d
@f

@xi@xj
(s;Xs; Zs) aij(Xs) ds:

Since dZs=V (Xs)Zs ds and @tu=Lu+Vu we arrive at

dMs = (¡@tu+Lu)(t¡ s;Xs)Zs ds
+(ru)(t¡ s;Xs)Zs�(Xs) dBs
+u(t¡ s;Xs)V (Xs)Zsds

= (ru)(t¡ s;Xs)Zs�(Xs) dBs:

This proves that M is a local martingale. Since u and V are bounded, M is also bounded. Con-
sequently, M is a martingale and

u(t; x)=M0=EMt=E[u(0; Xt)Zt] =E[f(Xt)Zt];

which finishes the proof. �

18 Markov property

Definition 18.1. Let B(Rd) be the Banach space of bounded Borel functions equipped with the
norm kf k= supx2Rd jf(x)j. A collection of bounded linear operators (Qt)t>0 on B(Rd) is a
transition semigroup if:

(i). Qtf > 0 a.e. if f > 0 a.e.,

(ii). Qt1=1 where 1(x)= 1 for all x2Rd,

(iii). kQtk6 1,

(iv). Qt+s=QtQs for all t; s> 0 (semigroup property).

We say that a process X = (Xt)t>0 adapted to a filtration (Ft)t>0 is a Markov process with
transition a semigroup (Qt)t>0 if

E(f(Xs+t)jFs)= (Qtf)(Xs) (18.1)

for all s; t> 0 and f 2B(Rd).

Remark 18.2. The probability that the Markov process X starting at x2Rd at time t>0 belongs
to a Borel set A coincides with Px(Xt2A)=Ex(1A(Xt))= (Qt1A)(x).
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Theorem 18.3. Let B be a Brownian motion and (Ft)t>0 be the natural filtration of B augmented
with the events of probability zero. Assume that b :Rd!Rd and � :Rd!Rd�m are Lipschitz
continuous functions and X =Xx is a solution to

dXt= b(Xt) dt+�(Xt) dBt (18.2)

with the initial condition X0=x2Rd. Then X is a Markov process with the semigroup

(Qtf)(x)=Exf(Xt):

Lemma 18.4. Under the assumptions of Theorem 18.3 there exists a map S :R>�R�
!R

such that:

(i). for every t2R> and x2Rd we have Xt
x(!)=S(t; x; !) for almost all ! 2
,

(ii). the map (t; x) 7!S(t; x; !) is continuous for almost all ! 2
,

(iii). for every t2R> and x2Rd the map ! 7!S(t; x; !) is Ft-measurable.

In particular, for all t> 0 the map (x; !) 7!S(t; x; !) is measurable with respect to the �-algebra
B(Rd)
Ft and the solution X of (18.2) with random initial condition X0= Y satisfies for all
t> 0 the idenity Xt(!)=S(t; Y (!); !) for almost all ! 2
.

Proof. See Sec. 9.8 of [Bal17]. �

Proof of Theorem 18.3. It is easy to check that (Qt)t>0 satisfies the conditions (i)-(iii). The
condition (iv) follows from (18.1) and the definition of Qt, since

(Qt+sf)(x)=Exf(Xt+s)=Ex(Ex(f(Xt+s)jFs))=Ex((Qtf)(Xs))= (QsQtf)(x)

for all x2Rd. Thus, it remains to prove (18.1). We have

Xs=X0+
Z
0

s

b(Xu) du+
Z
0

s

�(Xu) dBu

and

Xt+s=X0+
Z
0

t+s

b(Xu) du+
Z
0

t+s

�(Xu) dBu:

Set X~t=Xt+s, F~t=Ft+s, and B~t=Bt+s¡Bs. Then B~ is a Brownian motion adapted to (F~t)t>0
and we have

X~t=X~0+
Z
0

t

b(X~u) du+
Z
0

t

�(X~u) dB~u:

Indeed, this follows from
R
s

t+s
�(Xu)dBu=

R
0

t
�(X~u)dB~u, which can be seen by approximating both

sides by sums. Thus X~ solves (18.2) with X~0=Xs and B=B~.
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Define F :Rd�
!R by F (x;!)= f(S(t;x;!)), where S is the solution map from Lemma 18.4. Let
G=F~0=Fs and H be the �-algebra generated by B~u2[0;t]=(Bu¡Bs)u2[s;s+t] augmented with zero
probability events. Then G and H are independent, X~0=Xs is G-measurable and F is B(Rn)
H-
measurable. Hence, the assumptions of the freezing lemma stated below are satisfied and we obtain

E(F (X~0; �)jG)=G(X~0);

where the function G :Rd!R satisfies the equation

G(x)=E(f(F (x; �)))=Ef(S(t; x; �))= (Qtf)(x)

for all x2Rd. Since we have X~t(!)=S(t;X~0(!); !) for almost all ! 2
 we conclude that

E(f(Xs+t)jFs)=E(f(X~t)jF~0)=E(F (X~0; �)jG)=G(X~0)= (Qtf)(x):

This shows (18.1) and completes the proof. �

Lemma 18.5. (Freezing lemma) Let (
;F ; P ) be a probability space and G and H be inde-
pendent sub-�-algebras of F. Suppose that X is a G-measurable random variable taking values
in Rd and F :Rd�
!R is a B(Rd)
H-measurable function such that the random variable
! 7!F (X(!); !), denoted by F (X; �), is integrable. Then, we have

E(F (X; �)jG)=G(X); (18.3)

where the function G :Rd!R is defined by G(x) :=E(F (x; �)) for all x2Rd.

Proof. Let us assume first that F is of the form F (x; !)= f(x)Z(!), where Z is H-measurable.
In this case, G(x)= f(x)EZ and

E(F (X; �)jG)=E(f(X)Z jG)= f(X)E(Z jG)= f(X)EZ =G(X):

Therefore, the statement is true for linear combinations of F of the form described. One obtains
the general case with the help of Theorem 1.5 from [Bal17]. �

When modeling systems with Markov processes, we are often interested in their long-term behavior.
In particular, we seek to understand whether the system stabilizes and where it spends most of its
time. This is where invariant measures come into play. They capture the statistical equilibrium of
a Markov process � a distribution that remains unchanged as the process evolves.

Definition 18.6. Let X be a random variable in Rd. The probability measure

B(Rd)3A 7!P(X 2A)2 [0; 1]

is called the law of X and denoted by Law(X).

Definition 18.7. Let (Xt)t>0 be a Markov process. We say that a measure � is invariant for X
if the condition Law(X0)= � implies Law(Xt)= � for all t> 0.
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Remark 18.8. Let (Qt)t>0 be the transition semigroup of (Xt)t>0. A measure � is invariant iffZ
f(x) �(dx)=

Z
(Qtf)(x) �(dx)

for all t> 0 and f 2B(Rd).

Example 18.9. Let �>0 and B be a Brownian motion. Consider the Ornstein-Uhlenbeck process

dXt=¡�Xtdt+dBt

for all t> 0. We know that the solution is given by

Xt=X0 e
¡�t+

Z
0

t

e¡�(t¡s)dBs:

Let X0 be N (0;1/(2�)) and independent of B. Then, Xt has Gaussian distribution with vanishing
expectation and variance

Var(Xt)=
e¡2�t

2�
+ 1¡ e¡2�t

2�
= 1
2�
:

Therefore, Xt is N (0; 1/(2�)). Thus, the measure

�(dx)= �
�

r
e¡�x

2dx

is invariant for X.
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