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1 Informal introduction
Many physical phenomena can be modeled as stochastic processes that satisfy certain equations

involving random terms or coefficients. One example of such an equation is

=X + (X))

where (&)¢>0 is a certain collection of random variables (a stochastic process) called the white
noise and b, o are deterministic functions. Imagine that X} is the price of an asset at time ¢. The
first term on the RHS of the above equation models intrinsic predictable trends of price change.
The second term represents unpredictable changes of price due to influences of some random events.
It is natural to assume that these events are independent. We would like to define the white noise
(&1)ter as a collection of Gaussian random variables such that their mean vanishes, & and &; are
independent whenever s =t and fotés ds#0 for ¢t > 0. Unfortunately, one shows that there is no
collection (&)ier satisfying the above conditions. Nevertheless, it is possible to give meaning to
equations like (1). The idea is to first construct a stochastic process (By):>0 that, at least formally,
solves the equation

dB;
Ea

We call such a process (Bt)¢>0 a Brownian motion. As we will see, (By):>0 is very irregular as a
function of time and, in particular, is not differentiable. In order to make sense of (1) we rewrite it as

dXt = b(Xt) dt + O'(Xt)dBt.

We say that (X;):>0 is a solution of the above stochastic differential equation if

Xt:Xo—f—/
0

The last equation above is meaningful provided we can define an integral

T
/ Y,dB,
0

of a sufficiently generic stochastic process (Y;)¢>0 with respect to a Brownian motion (By)i>o. We

t t

b(X,)ds + / o(X,)dB..
0

call the above integral the stochastic integral. Because of very irregular nature of Brownian
motion the construction of the stochastic integral is quite nontrivial and will be one of the subjects
of this course.

Content of the course:
e Brownian motion and martingales.

e Construction of the stochastic integral and its properties.

Stochastic differential equations.

Link between partial differential equations and stochastic processes.

2 Some elements of probability theory

Definition 2.1. A triple (Q, F,P) is called a probability space provided ) is a nonempty set,
F is a o-algebra of subsets of Q, and P: F —[0,1] is a probability measure. A set E € F is called
an event, a point w €Q is called a sample point and P(E) is the probability of the event E.



The smallest o-algebra containing all the open subsets of R? is called the Borel o-algebra.
Note that elements of this algebra, called Borel sets, can be formed from open sets through the

operations of countable union, countable intersection, and relative complement.

Definition 2.2. Let (2, F,P) be a probability space.
o A map X:Q—R? is called a random variable if X ~'(B) € F for all Borel sets B C R%.
o We write P(X € B) for P(X~Y(B)), that is, the probability that X takes values in B.
o We call E(X):= [, X(w)P(dw) the expected value of X.
o Random variables X3,..., X, are independent if
P(X1€DBy,...,Xp€By)=P(X1€ By)...P(X, € By)
for all Borel sets By, ..., By,.

o A collection (X;)iter of random variables indexed by elements of some set I is called a
stochastic process. For each sample point w € §) the map t— X¢(w) is the corresponding
sample path.

o We say that a process (Xi)ier is continuous (resp. a.s. continuous) if its sample paths
are continuous (resp. a.s. continuous), that is the map t+— Xi(w) is continuous for all
(resp. almost all) w € ).

We say that a random variable X:{) — R has Gaussian (or normal) distribution with mean m
and variance o2, and write X is N'(m,0?), if

Pix<a)= [ f@an f@)=plam,o?i=— e L),

The map a — P(X < a) is called the distribution function of a random variable X and the
function f related to IP(X < a) by the formula above is called the density function of X (note
that not every random variable has a density).

3 Definition of Brownian motion and basic properties

Definition 3.1. Let (2, F,P) be a probability space. A stochastic process (By)i>o is called a
Brownian motion (or a Wiener process) if it has the following properties:

(i). Bo=0 a.s.

(it). The increments of (By)i>o are independent, that is, for every finite set of times 0 <t1 <
ta< - <t, <00 the random wvariables

Bi,— Bt,,Bi;— By,,...,B;, — By, _,
are independent.

(i11). For any 0 < s<t<oo the increment By — B, is N(0,t — s).

(iv). (Bi)t>0 s a.s. continuous.



Remark 3.2. A Brownian motion with initial point z is a stochastic process (By);>0 such that
By=x a.s. and the conditions (ii)-(iv) introduced above are satisfied.

Remark 3.3. One of the many reasons that Brownian motion is important in probability theory
is that it can be obtained as the continuous-time limit of a simple symmetric random walk when
the step size and time step shrink appropriately. A simple symmetric random walk starts
at zero and at each step moves +1 or —1 with equal probability. More precisely, it is a discrete
stochastic process (Sp)nen, defined by the conditions and

So=0, Snzz X;, neNg,

i=1

where Xj, X5, X3,... are i.i.d. random variables taking values +1 or —1 with equal probability.
Let € >0 and define

Bt(a) i=eSye2, t€{0,e2,2¢2,. ..}

Note that B,EE) describes a walk that starts at zero and at each time t € {0,£2,2¢2, ...} moves +&
or —e with equal probability. By the central limit theorem we know that the distribution of S—:L

NG
converges to N'(0,1) as n— oco. Hence, the distribution of

B = T St/e2

\Vt/e?

converges to N (0,¢) as € \,0. Since increments of Bt(s)

process (BP)DO (obtained from (B,EE))
a Brownian motion.

are independent, this suggest that the

te{0,62,2¢2, .} by linear interpolation) should converge to

Remark 3.4. The history of the Brownian motion began in 1827 when a botanist Robert Brown
looked through a microscope at pollen grains suspended in water and discovered the pollen was
moving in a random fashion. He noted that the path of a given particle is very irregular and the
motions of two distinct particles appear to be independent. It wasn’t until later that scientists
realized the true cause of this motion was not biological, but rather physical. The motion was due
to the random collisions between the pollen particles and the much smaller water molecules, which
were in constant, chaotic motion. This phenomenon, now known as Brownian motion, is a type
of random movement that is a key concept in both physics and mathematics. In 1905 Albert
Einstein provided a mathematical explanation of Brownian motion. He suggested that the random
movement of particles was a result of thermal fluctuations at the molecular level, leading to what we
now call diffusion. In 1900 the French mathematician Louis Bachelier applied a random process
model to describe stock prices, which shares similarities with the randomness seen in Brownian
motion. A rigorous construction of Brownian motion was given by Norbert Wiener in 1923.

Definition 3.5. If a stochastic process (Xt )i>0 has the property that for every 0<t; <ta<...<
t, < oo the vector (Xy,,...,Xy,) has a multivariate Gaussian distribution, then (Xy)i>o is called
a Gaussian process.



Lemma 3.6. A process (Bt )i>0 is a Brownian motion iff it is Gaussian, a.s. continuous and
for all s,t >0 it holds that

IEBtZO, IE(BSBt) =sAt.

Notation 3.7. We set s At:=min(s,t) and sV t:=max (s,t).

Proof. Suppose that (B;):>0 is a Brownian motion. Then for every 0<t; <t < ... <t, < oo the
vector

(Bthtz_BtnBt?,_Btz?"'vBtn_Btnfl) (31)

has a multivariate Gaussian distribution. It follows that (By,,..., B:,) also has a multivariate
Gaussian distribution. In consequence, (By)¢>0 is Gaussian. It is evident that IEB; =0. Suppose
that s <t. Since B, and B; — By are independent, we have E(B,(B; — Bs)) = E(B,)E(B; — B;) =0.
As a result, E(B;B,) = E(B2?) + E(B,(B; — B,)) = s. This proves that IE(B;B,) =t A s.

Now let us prove the reverse implication. We have to show that (By);>¢ satisfies the conditions
(i)-(iii) stated in Def. 3.1 (the condition (iv) is satisfied by assumption). Since E(Bg) =0, By=0
a.s. and (i) holds true. To prove (ii) we have to demonstrate that the vector (3.1) has a diag-
onal covariance matrix. To confirm the vanishing of the off-diagonal terms we use EB; =0 and
E(BsB;:) =s At to show that for i < j it holds that

COV(Bti - Bti—l’ Btj - Btj—l) :E((Bh - Bt'i—l)(Btj - Btj—l))
—E(B,,B:,) —E(B,,By, ,)—E(B;
=t;—t;—t;_1+t;_1=0.

By,) +E(By,_ By, _,)

i—1 i—1

By a similar computation we obtain IE(B; — B,)2 =t — 5. Since [E(B; — B,) =0, we conclude that
B;— B is N(0,t —s). Hence, the condition (iii) is satisfied. This finishes the proof of the lemma. [

Lemma 3.8. Let (Bt)t>0 be a Brownian motion.

(1). (Invariance under translations in time). Let a>0. The process (X¢)t>0= (Bi+a—Ba)t>0
is a Brownian motion.

(ii). (Scaling property). Let a>0. The process (Yi)i>0= (%BaQt)t>o is a Brownian motion.

(iii). (Time inversion). Let Zo=0 and Zy=1tBy s for t >0. Then the process (Z; )i>o0 is a

Brownian motion.

Proof. We use the characterization of Brownian motion given in Lemma 3.6. It is evident that
all of the processes defined in the statement are Gaussian with mean zero. A simple computation
using EB;B;= s At shows that EX; X;=sAt, EY;Y;=sAt and [EZ;Z;=s At. For example, we have

EZZi=stE(By/sBiy) =st(1/sAN1/t)=sNt.

This shows that the covariance condition stated in Lemma 3.6 is fulfilled. It is also clear that
(X¢)e>0 and (Y3 )0 are a.s. continuous and (Z;)¢>¢ is a.s. continuous away from zero.



To complete the proof of the lemma it remains to establish the continuity of (Z;)¢>¢ at zero. To
this end, consider two events

-0 U N s fm o)

meNy neNy keNy

=N U N {IZml 1}{7}1{%&0}.

meENL nelNy kelNy

Here for every n € Ny, (tn x)ren, is a arbitrarily fixed sequence of all elements of QN (0,1/n),
where @ is the set of rational numbers. We used above the fact that if f:[0,00) — R is continuous
away from the origin, then lim;\ o f(¢) =0 iff

1 1
VmeN,IneN, Veeqn(o,1/n)| f(t)] QE & YmenN,IneN, Vien,|f(tn,k)] QE-

Since for all 0<t; <t2 < ... <t, < oo the vectors (By,,...,B:,) and (Z,,..., Z,) have the same
distribution (both vectors have Gaussian distribution with mean zero and the same covariance),
by the continuity of the probability measure from below and above we conclude that the events A
and B have the same probability. Since IP(A) =1 by the condition (iv) of Brownian motion, we
have IP(B) =1. This proves that Z; is a.s. continuous at ¢t =0. O

Lemma 3.9. Let (By)i>0 be a Brownian motion. For all 0 <t;<te<...<t,<oo the joint
distribution of (By,,...,By,) is given by

01<Bt1<b1;(12<3t2<b27 .y an < By, <b)

b1 n
/ / .I‘l,tl I2—$1,t2—t1) (an—ain_l,t t _1) da:l...da:n,

where p(z;t) ;:ﬁeXpHxP/m).

Proof. Set tp=0 and define the following random vectors

Bt1 Bt1
b el R
Btn Btn - Btnfl

By the conditions (i) and (ii) of Brownian motion the components of Y are independent. By
condition (iii) the random variable By, — By, _, is normally distributed with mean zero and variance

t; —t;_1. Hence, the joint density fy of Y satisfies the equation
[y, mn) =pleit)p(ta— ). .. p(@ni ty — ta-1).

Observe that ¥ = MX , where the matrix M is defined by the equation

X1 X1

T2 T2 — X1
M| . = .

T Ty —Tp—1



As a result, the joint density fg of X satisfies the equation

fz(@y,.. o 2n) =f3(Z) = fp(MZ)|det M|
:f“(Mﬂ):fy(.’ljh],'Q—Z‘l,...,J)n—Z‘n,l)
=p(z1;t1)p(xe — x15ta — 1) .. . (T — Tn—1; tn — tn—1),

where we used the fact that |[det M |=1 (in particular, M is invertible). This completes the proof. [J

4 Construction of Brownian motion

In this section, we present the construction of Brownian motion given originally in 1934 by Poley
and Wiener. We only construct a Brownian motion By for ¢ € [0, 7r]. The construction for all ¢ >0
requires an additional step (see Exercise 1, Sheet 2). Let (X,,)nen, be a sequence of i.i.d. N(0,1)
random variables in a probability space (2, F,P). Define

B™ :_Xo—i— Z \/ism te[0,7], meN.

Observe that for any fixed m € Ny and w € Q the function ¢t — Bgm)(w) is smooth. It is also easy
to see that for any fixed ¢ € [0, 7] the series converges in mean square. Indeed, E(X,X;) =6, by
independence of (X,)nen, and EX,, =0, EX2=1. Hence,

om _ 1

Z X SlIl

n=2k—1

om _ 1 2m

sin? nt 2 ~
2y mapipy <; Z

n2’“1 n=2Fk

E B(m) B(l

which implies that the series defined by partial sums is Cauchy. Hence, we can define in the
probability space (€2, F,P) a stochastic process (By)¢e(o,x by the equality

t = 2 sin(nt)
B, =—X, ——2 X, t e |0, .
t \/E 0 + nz::l p n ny S [ bl 7T]

We shall prove that (Bt);c[o,~) is a Brownian motion. To this end, we will use the characterization
of Brownian motion given in Lemma 3.6. It is evident that (B);c(o,+] is Gaussian, Bp=0 and
[EB;=0. To compute the covariance observe that

s t
E(B!™B™) = / / E(8,B™ 8,,B{™) dudw (4.1)
0 Jo
and
om_1
8tB(m)——X0—|— Z \/:cos (nt) X, = Z X en(t
where

eo(t) —1 en(t) := \/%cos(mf)7 neN,,

is an orthonormal basis of L?([0,7]). Using E(X,X;) =4, we obtain

2m—1 2m_1
E(0.B" 0,BJ") = 3" BX2) en(wen(w)= > en(u)en(w).
n=0 n=0



Hence, for all f, g€ L%([0,7]) we have

lim / / IE(@HBS") &UBI(Um)) f(u)g(w) dudw
00 (4.2)
= lim Z (f, en)L2([O,7r])(em g)L2([0,7r]) = (f7 g)LQ([O,w])a

m— oo
n=0

where (f, g)r2([0,x)) denotes the scalar product. Let 1; be the characteristic function of a set I.
Since Bt(m) converges to By in mean square for all t € [0, 7], by (4.1) and (4.2) applied with f=1jg
and g=1jp 4 we obtain

E(B,B;) = lim E(Bgm)Bt(m)):(f,g)m([w):/o 10,4)(w) 10, (1) du=s A t.

m— 00

In view of Lemma 3.6 in order to complete the proof that (Bi)icjo,r is a Brownian motion it

remains to show that (Bi)¢e[o,~) has a.s. continuous paths. The idea is to prove that (B,Em))te[o_ﬂ]

converges a.s. to (By)iejo,x] as m — oo uniformly in ¢ € [0, 7]. Since (Bt(m)) | has continuous

telo,m
sample paths and uniform convergence preserves continuity this would imply that the sample paths

of (Bt)te[o, are a.s. continuous.

Theorem 4.1. The sequence of stochastic processes (B,Em) converges as m — 0O Q.S.

)tE[O,ﬂ']
uniformly in t € [0, 7] to (By)ielo,x], that is

IP( lim sup |B§’”)—Bt{=o)=1.

m—00tc0,n]

The process (By)ic(o,x) defined by (4) is a Brownian motion.

Remark 4.2. The following result is known as the Weierstrass M-test. Let (f,)nen, be a
sequence of functions defined on a set . Suppose there exists a sequence of non-negative constants
(Mp)nen, such that | f,(x)] <M, for all z € E and all n€ Ng and > " ' M, <co. Then the series
> fu(z) converges uniformly on E.

Lemma 4.3. For alll,p&e Ny, p>1, we have

_ _1)3/2 —1 i
IE(TlQP) < p—1I + 2(p-1) ’ Tp = sup anm(nt) .
' 12 1 ' te[0,n] nel n
Proof. See Exercise 2, Sheet 1. It is crucial to use independence of (X,,)nen,- O

Proof of Theorem 4.1. By the argument presented above the statement of the theorem, it is
enough to show the uniform convergence. We have

m—1 2i+1_1
(m)y 1 /2 4 I sin(nt)



Note that |f;(t)| < M;:=Tyi 5i+1. It suffices to show that P(3°7°  M; <oco) =1 and apply the
Weierstrass M-test. Observe that by the Cauchy-Schwarz inequality and Lemma 4.3 we have

(BT} 2)* < E(TPa) <

Consequently,

2 o0 oo oo 2
EM; =ETy: gi+1 <W7 ]E(ZO Mk> :; E(M;) < Z; S <

Since the random variable Y7 M} € [0, co] has finite expected value, it has to a.s. take finite
values, that is P(}"7° j M; < oc)=1. This finishes the proof. O

5 Conditional expectation

The conditional probability of an event A given an event B is defined by

P(ANB)

P(A|B)="p5

provided P(B) > 0.

Note that we can think of B C ) as a new probability space equipped with the probability measure
P(-| B). Thus, it is natural to define the conditional expected value of a random variable X
given an event B as

E(X|B) /X P(dw| B) = /X P(dw) provided P(B)> 0.

Assume we are given a probability space (2, F,P) and a random variable Y such that

a; on Aj,
y_Ja on Ay,
am on Ay,

for distinct real numbers a1, as, ..., a., and disjoint events Ay, As,..., Ay, each of positive probability,
whose union is 2. Define a random variable

]E(X|A1) on A17

]E(X| Y) — ]E(X|A2) ?n AQ,

E(X|A,) on A,,.

We call the random variable E(X|Y") the conditional expected value of X given Y. Note that (see
the definition below):

e E(X|Y)is o(Y)-measurable.
¢ [ X(w)P(dw)= [,E(X|Y)(w)P(dw) for all Aco(Y).

In what follows, we generalize the above definition of E(X|Y) to arbitrary random variables Y.



Definition 5.1. Let (0, F,P) be a probability space, G be a sub-o-algebra of F and X :Q — RY
be a random variable. We say that X is G-measurable if X ~Y(B) € G for all Borel sets B C R%.
The sub-c-algebra of F defined by

o(X):={X~1(B)| B — Borel subset of R¢}

1s called the o-algebra generated by X.

Remark 5.2. ¢(X) is the smallest sub-o-algebra of F with respect to which X is measurable.
o(X) contains all the events that can be expressed in terms of X.

Remark 5.3. If a random variable Y is a Borel function of X, that is, if Y = f(X) for some Borel
function f, then Y is o(X)-measurable. Conversely, suppose that a random variable Y is o(X)-
measurable. Then there exists a Borel function f such that Y = f(X).

Definition 5.4. A random variable X is integrable (resp. square-integrable) if E|X|< oo
(resp. EX?<o0). A random variable X is bounded if |X|<C a.s. for some deterministic C > 0.

Theorem 5.5. Let (Q,F,P) be a probability space, X be an integrable random variable and G
be a sub-c-algebra of F. There exists a G-measurable random variable Z such that

/X(w)lP(dw):/Z(w)lP(dw) forall Aeg. (5.1)
A A

A random wvariable Z satisfying the above properties is unique up to P-equivalence. We denote
by E(X|G) any representative of this equivalence class and call it the conditional expectation of
X with respect to G.

Proof. See e.g. Sec. 4.2 of [Ball7]. O

Definition 5.6. Let (2, F,P) be a probability space and X and Y be random variables such that
E|X | <oo. The conditional expectation of X given Y is defined by E(X|Y):=E(X|o(Y)).

Remark 5.7. Using an approximation argument (see e.g. Prop. 1.11 in [Ball7]) one shows that the
condition (5.1) is equivalent to E(XW)=E(ZW) for all bounded G-measurable random variables

W. If G=0(Y), then by Remark 5.3 the above condition is equivalent to E(Xg(Y))=E(Zg(Y))
for all bounded Borel functions g.

Example 5.8. Let X and Y be random variables with the joint density fx y € L'(R x R). If X
is integrable, then we claim that

]E(X|Y)EIE(X|0(Y)):/fo(x|Y) dz.
The conditional density fx(x|Y) of X given Y is defined by

Lt it fy(y) #0,
0 if fy(y) =0,

fx(xly) =

10



where fy(y)= [ fx,v(z,y)dx is the density of Y. Let us verify the above claim about E(X|Y).
Since y+— [z fx(x|y) dz is a Borel function, the random variable [z fx(x|Y") dz is o(Y)-measurable.
Moreover, for all bounded Borel functions g we have

E(o(¥) BX[Y)) ~B( oY) [ fxlal¥) ds )

=/g(y)</xfx(w|y) dx) fr(y) dy

=/g(y)xfx,y(x, y) dzdy
=E(g9(Y)X).

Lemma 5.9. Let (2, F,P) be a probability space, G, H be a sub-c-algebra of F and X,Y ,Z,
X1, Xo,... be integrable random variables.

(a) Linearity: If o, € R, E(aX + fY|G) =aE(X|G) + SE(Y|G) a.s.

(b) Monotonicity: If X <Y a.s., E(X|G) <E(Y|G) a.s.

(¢) Monotone convergence: If X, >0 and X,, /' X a.s., then B(X,|G) /B(X|G) as.

(d) Jensen’s inequality: If ¢: R — R is convezr and B|p(X)| < oo, ¢(E(X|G)) <E(S(X)|G) a.s.
(e) Ezpectation: E(E(X|G))=EX.

(f) Tteration: If G C'H, B(E(X|H)|G) =E(X|G) a.s.

(9) If Z is G-measurable and E(|XZ|) < oo, E(Z|G)=Z and E(XZ|G)=ZE(X|G) a.s.

(h) If X is independent of G, then E(X|G)=EX a.s.
Proof. See Exercises 2 and 3, Sheet 2. a

Remark 5.10. A random variable X is independent of a o-algebra G if P(AN B)=P(A)P(B)
for all A€ o(X) and Beg.

6 Martingales

Suppose Y1, Ys, ... are independent random variables with mean zero and define the stochastic
process (Sp)nen, by Sp:=Y1+---+Y,. We have

E(Sn+k‘sla ) Sn) :E(Sn|Sla EE3) Sn) +E(Yn+1 + - +Yn+k‘517 EES) Sn)
:Sn+E(Yn+1 + - +Y;L+k) = Shp.

Thus, the best estimate of the future value of the stochastic process (Sp)nen, given the history
up to time n, is just S,. The process (Sp)nen, is an example of a martingale. Martingales are
stochastic processes that are meant to capture the notion of a fair game in the context of gambling.
If we interpret Y; as the payoff of a game at time ¢ and S,, as the total winnings at time n, the
condition E(S,1k|S1, ..., Sn) = Sp, says that at any time the future expected winnings, given the
winnings to date, is just the current amount of money.

11



Definition 6.1. Let (2, F,P) be a probability space. A filtration is a family (Fi)i>o0 of sub-o-
algebras of F such that if s <t, then Fs CFy. A stochastic process (Xi)i>o is adapted to (Fi)i>o
if Xt is Fy-measurable for every t > 0.

Remark 6.2. You should think of F; as the o-algebra of the events for which at time ¢ we can
say whether they are satisfied or not.

Example 6.3. Given a process (X¢):>o define FiX to be the smallest sub-o-algebra of F containing
the o-algebras generated by X for s € [0,¢]. We call (F7*);>0 the natural filtration of (X;);>o.
The o-algebra F7* contains all events that can be expressed in terms of (Xs)se[o,4)- Every stochastic
process is adapted to its natural filtration.

Definition 6.4. Let (Q,F,P) be a probability space and (Fi)i>o a filtration. A stochastic process
(My)t>0 is a martingale (resp. a supermartingale, o submartingale) if:

(a) E|M <oo for allt>0.

(b) E(M{Fs)=M; a.s. (reps. <, =) if s<t.

(c) My is Fi-measurable for ¢t > 0.

Example 6.5. A Brownian motion (B;):>¢ is a martingale with respect to its natural filtration
(FP)¢>0. Indeed, by Cauchy-Schwarz inequality E|B;| < (E(B?))'/2=1!/2 < co. Moreover, if t > s,
then

E(B,|FP)=E(B; — Bs+ B,|FP) =E(B, — B,|FP) + E(B,|F?) = E(B; — B,) + B, = B..

The second equality follows from the property (a) and the third from the properties (g) and (h)
of the conditional expectation stated in Lemma 5.9.

Example 6.6. Let X be an integrable random variable and (F3)+>0 be a filtration. For ¢ >0 define
M to be (any representative of the equivalence class) E(X |F;). Then (My)¢>0 is a martingale with
respect to the filtration (F3)¢>¢ called the Doob martingale. See Exercise 3, Sheet 3 for a proof.

Proposition 6.7. If (M;):>0 is a martingale and p: R — R is convex and satisfies E|p(M)| < oo
for t 20, then (o(My))i>o0 is a submartingale. In particular, (|M¢|)i>o is a submartingale and
(M?)i>0 is a submartingale if EM? < oo for all t>0.

Proof. The conditions (a) and (c) hold true. By property (d) of Lemma 5.9 we have for s <t

E(p(M)|Fs) = p(E(M;|Fs)) = o(Ms). 0

Definition 6.8. Let (2, F,P) be a probability space and (Fi)it>o0 a filtration. A stopping time
is a random variable T:Q — [0, 00] such that {7 <t} € F; for all t > 0. Given a stopping time T

we define the o-algebra of events prior to T by

Fr={AcF|An{r <t} eF; for all t >0}.
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Remark 6.9. A stopping time can take infinite values. Intuitively, the condition {r <t} € F;
means that at time ¢ we should be able to say whether 7 <t or not.

Remark 6.10. If (X}):>0 is a continuous adapted stochastic process and A is an open set, then
the exit time from A defined by

Ta:=inf{t 20| X; ¢ A} €0, 0]

is a stopping time. For a proof, see Prop. 3.7 in [Ball7].

Proposition 6.11. Let (2, F,P) be a probability space and (Fi)i>0 a filtration.
(i). If 71,72 are stopping times, then 71 Ao and 11V T2 are also stopping times.

(i1). If (Xi)i>0 is adapted and continuous and T is an a.s. finite stopping time, then

Xriw= X ()W)l coo(w)

is an Fr-measurable random variable.

Proof. (i) See Prop. 3.5 in [Ball7]. (ii) See Prop. 3.6 and Prop. 2.1 in [Ball7]. O

Theorem 6.12. (Optional Stopping Theorem) Let (My)i>0 be a continuous martingale
(resp. supermartingale, submartingale) and let 11, T2 be two stopping times such that 71 < T2 and
T9 18 bounded a.s. Then

E(Mp|Fr)=M; (resp. <,2=).

Proof. See e.g. Theorem 5.13 and Theorem 5.2 in [Ball7]. O

Remark 6.13. Using the above theorem it is possible to prove that if (M;);>0 is a continuous
martingale and 7 is a stopping time, then M7 :=(M;a+)¢>0 is a martingale. See Prop. 5.6 in [Ball7].

Theorem 6.14. (Doob’s Inequalities) Let (My);>0 be a continuous martingale. Define

My := sup | M.
s€[0,t]

Then:

(a) AP(Mi>)\)<E|M for allt>0 and A>0.

(b) For allt>0, if B(M?)< oo, then E((M)?) <4AE(MZ).

Proof. (a) Let 7y =inf{s> 0] |M;| ¢ (—oo,\)} At and 72 =¢. Then 7 and 7 are stopping times
such that 7 <72 <t < oco. Applying the optional stopping theorem to the submartingale (|M;|)s>o
we obtain

| My, | SE(| M| | Fr,) = E(| M| [Fr,)-

13



Thus,
| M-y 1 01, 203 SE(M| [ Fr) 01,203
Since 1|ar,,|>2} is Fr,-measurable, by Lemma 5.9 (g) we obtain

| Mo | L iar, 20y < E(M Tgar,, 5031 Fry)-

Consequently,
E(IMr L0, 201) SE(ML(ar,1203)- (6.1)
Note that
(1M > A} = {IMy] ¢ (—00, ) for some s € [0, ]} = {M > A}
Hence,

AP(M{ > XN) =AP(|Mr| > A) =EX\Lyar,, >2y) SE(M 1, 20))
SE(Mliqar,, 1>2y) = E(M| L= ay),

where the second bound follows from (6.1). We conclude that
AP(Mg 2 A) S E(|Mi|1ia;>a), (6.2)

which implies the claim (a).

(b) Recall that if X >0 is a random variable and a deterministic constant 7' > 0, then for p >0,
we have

T T
]E(X/\T)P:IE/ p)\p_lll{,\gx}d)\:/ PAPTIP(X > A)d.
0 0

Using this fact with p =2, the estimate (6.2), the Fubini theorem and the Cauchy—Schwartz
inequality we obtain

T
E((M{ AT)?) :/O IAP(M; > A)dA

T
</ 2E(|Me|Liarg>ay) dA
0

T

21E<|Mt|/ 1{M:>A}d>‘>
0

=2IE(| M| (M7 AT))

<2, [E(M?) VE((M; AT)?).
If M} =0, then the statement is clearly true. Otherwise, E((M; AT)?) € (0,T?] and

VE((M; AT)?) <2, /E(MP).

The claim (b) follows by taking the limit T'— oo of both sides of the the above bound and invoking
the monotone convergence theorem. a
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7 Integration with respect to bounded variation processes

The fundamental problem we will address in the upcoming lectures is to rigorously define the

t
/ H,dX,,
0

where (X;)¢>0 and (H¢)¢>0 are processes enjoying certain properties to be specified. The simplest

integrals

approach would be to define the integral separately for each path, that is, to study

/0 Ho(w)d X (@) (7.1)

for all sample points w € 2. Such a construction is provided by the Stieltjes integral. As we shall
see, this construction does not work if (X;)¢>0 is a martingale.

Our goal is to find a natural sufficient condition for sample paths of (X;):>0 that allows to construct
the integral (7.1). The remark below suggests a possible but unnecessarily restrictive sufficient
condition.

Remark 7.1. Recall that if 4 is a finite positive measure on (0,77, then ¢ +— u((0,¢]) is a right-
continuous non-decreasing function vanishing at zero. Conversely, given right-continuous non-
decreasing function g on [0, 7] there is a unique associated finite positive measure p4 on (0,T] such

that ((0,1]) = g(t) — g(0)-

Thus, if s— X;(w) is a right-continuous non-decreasing function, then (7.1) can be defined as the
integral of H(w) with respect to the positive measure jix (). Let us try to extend this definition
to the situation where X (w) is not monotonic.

Definition 7.2. A signed measure i on (0,T] is the difference of two finite positive measures
on (0,T].

It turns out that if u is a sign measure on (0,77, then ¢+ p((0,¢]) is a right-continuous function
of bounded variation vanishing at zero.

Definition 7.3. The variation of a function g:[0,T] — R on an interval [0,t] is defined by

Vi(g) :=sup { > lg(t) = glti-))|
=1

0=t0<t1<"'<tn1<tn=t,n61N+}.

We say that g is of bounded variation if its total variation Vr(g) is finite.

Remark 7.4. The variation Vy(g) is a non-decreasing function of ¢. If g is non-decreasing, then
Vi(g) = g(t). If g is Lipschitz continuous with a Lipschitz constant L, then V;(g) < Lt.

Theorem 7.5. Let g be a right-continuous function of bounded variation. There exist unique

non-decreasing right-continuous functions g4, g— such that

g=g9+—9- and  V(g)=g++yg-.
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Idea of proof. Define g4 (t) :%(Vt(g) +g(t)) and g_(¢) :%(Vt(g) —g(1)). O

Theorem 7.6. For every right-continuous function g of bounded variation on [0,T] there is a
unique associated sign measure g on (0,T] such that pg((0,t]) = g(t) — ¢(0).

Idea of proof. Let g;, g be as in the previous theorem and let pg,, py_ be the finite positive
measures associated to gy, g—. Define pig= g, — py_. Note that

1((0,1]) = p1g, ((0,]) = p1g_((0,1]) = (9+(t) = 94(0)) = (9-(t) — 9-(0)) = 9(¢) — 9(0). 0

Example 7.7. If g€ C?, then p(dt) = g'(t) dt, where dt is the Lebesgue measure. If g=11, o),
then p =4, is the Dirac delta at a. If g=1p,5) = 1{a,00) — 1[p,00), then p=3dq — dp.

Definition 7.8. Let g:[0,T] — R be right-continuous and of bounded variation with associ-
ated signed measure jig. The positive measure |jig|:= pig, + ptg_ on (0,T] associated to the non-
decreasing right-continuous function t — Vy(g) is called the variation of u,. For f€ L'([0,T],
l1g]) and t €0, T] we define

(fmr[ﬁ@mmﬁz/ﬂw@ﬁw%mw

where the integral with respect to a sign measure is defined by

[ 1mfas)= [ fs)ng. (@9~ [ 1 (as).

We call (f-g): as above the Lebesgue—Stieltjes integral of f with respect to g.

Remark 7.9. One shows that t+— (f - g): is of bounded variation for f, g as in the definition above.

Proposition 7.10. Let g:[0,T] — R be right-continuous and of bounded variation and f:[0,T] —
R be continuous. Then the Lebesgue-Stieltjes integral coincides with the Riemann—Stieltjes
integral, that is,

(f-9)e= lim 3~ f(s{")(g(t™) —9(t"1),
i=1

=t and s\ € [t(n) t(")] are arbitrary such that

7 i—10 %

where 0=t <t < .. <t

n

li ¢t )y =,
nl»H;oZE{rlr,laX,n}( ¢ 1_1)

Definition 7.11. We say that stochastic processes (X)i>o0 and (Y)i>o0 are indistinguishable
if their sample paths coincide a.s., that is, P(V;>0X:=Y;) =1.
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Definition 7.12. (Integral with respect to a process of bounded variation) Let
X=(X¢)tep, 1) be a.s. of bounded variation and H = (Hy)epo,m) € L*([0,T], |pnx]) a.s. The inte-
gral of H with respect to X is the equivalence class of indistinguishable stochastic processes

t
(H'X)tE[O,T]_</ HSdX5>
0 t€[0,7]

of bounded variation such that
(H - X)i(w) := (H(w) - X(w))q

for all t €[0,T] and all w € Q for which (H(w)- X (w)); is well-defined as the Lebesgue—Stieltjes

integral.

Imagine that H, is the quantity of an asset held by an investor at time s and X is the price of
the asset at time s. Then the integral f g H,d X, represents the gain realized in the time interval
[0,t]. The following proposition shows that the construction of | Ot Hyd X, presented above cannot
be apply in the situation when the price of the asset is modeled by a Brownian motion or, more
generally, a martingale.

Proposition 7.13. A continuous martingale (My)t>o s of bounded variation iff it is a.s. con-

stant.

Remark 7.14. The above proposition implies that Brownian motion is a.s. not of finite variation.
In particular, it is a.s. not differentiable.

Proof. We may suppose that My =0 and prove that M = (M});>0 is identically zero if it is of
bounded variation. Let Vy(M) be the variation of M on [0,¢]. For K >0 define

(W) :=inf{s > 0| Vs(M(w)) > K }, we.

By Remark 6.10 the random variable 7x is a stopping time and by Remark 6.13 (M/*);>0:=
(Miarg)t>0 1s & martingale. By the above definitions (Mt)t>0 has the variation bounded by K.
In particular, we have |M/*| < K and E((M/%)?) < K2. Moreover, since t+— M,(w) is of bounded
variation for every s> 0 there is K >0 such that V(M (w)) < K and 7x(w) > s. Hence, limg —, oo 71 =
00 a.s.

For 0=ty <ti1<...<tp=t we obtain

k k
E((M[*)?) = E(Z ((M{F)? = (MEK1)2)> = E(Z (M — M;K1)2>-

i=1 i=1

The last equality follows from E(M7¥M{¥ ) =E(E(M/|F;,_1)M{< )=E(M™] ) since M~ is

—1
a martingale. As a result,

E((M7%)?) < B[ Vi(M™) max M7 = M{* || < K| max M7 — M7 |].
K3 K3

When max; [t; — t; 1] goes to zero, max; M/ — M/[¥ | goes to zero since M is continuous (and
hence uniformly continuous) on [0,7]. Thus, by by the dominated convergence theorem and the
bound max; |[M{X — M[¥ | < K we infer that E((M;%)?)=0. This shows that M/ = M;x, =0
a.s. for all ¢ >0.
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Since limg . oo T =00 a.s., we have My =limg_, oo Miar, =0 a.s. for all £>0. Thus, for every t >0
there is an event E; C Q such that P(E;) =1 and My(w)=0 for w € E;. Let E = ﬂteQﬂ[O,oo) By,
where @ is the set of rational numbers. Then E is an event such that P(E)=1 and M;(w)=0 for
weFE and t € QNJ0,00). The statement follows now from the assumed a.s. continuity of M. O

8 Stochastic integral

Our goal is to define an integral
t
/ H.dB; (8.1)
0

of a sufficiently generic stochastic process H = (Hy)¢>0 with respect to a Brownian motion B =
(Bt)t>0. Since Brownian motion is a non-zero martingale, its variation is a.s. unbounded and the
construction of an integral presented in the previous section does not apply.

Throughout this section we assume that (2, F,P) is a probability space, (F¢)+>o0 is a filtration such
that Fy contains all the events of zero probability and (B;):>¢ is a continuous Brownian motion
adapted to (F¢)¢>0 and such that (Bsyt— Bt)s>o is independent of F; for all ¢ > 0. For simplicity,
we fix a finite time horizon T > 0 and construct the stochastic integral (8.1) for t € [0, T.

Remark 8.1. The assumptions that F; contains all the events of zero probability is of technical
nature. Note that, for example, it guarantees that an a.s. limit of an adapted process is adapted.

Remark 8.2. Let (FF);>0 be the natural filtration of a Brownian motion (B;);>o and N =
{A€ F|P(A)=0}. We can define F; to be the o-algebra generated by F£ and N, that is, the
smallest sub-o-algebra of F containing all the events from F£ and all the events of zero probability.
One checks that By — By is independent of F; for all s,¢ > 0.

8.1 Integral for simple predictable processes

Definition 8.3. We say that H = (H;)¢cjo,1) is a simple predictable process if

Hy=>" Xil, ,u)(t) (8.2)
=1

for someneN,, 0=tg<t;<...<t,=T and random variables X, ..., X, such that EX? < oo
and X; is a Fi,_,-measurable for all i € {1,...,n}. Let Ep denote the vector space of simple
predictable processes.

Remark 8.4. Every H € &r is adapted and left-continuous.

Definition 8.5. The integral of H € E of the form (8.2) with respect to the Brownian motion
B is defined by

t n
(HB)tE/ HS st::Z Xi(Bt.;/\t_Bti,l/\t)v te [07T]
0 i=1

The value of (H - B); does not depend on the representation of H as an element of Er

Remark 8.6. If t € (t;_1, tx), then

k—1
(H'B)t: Z Xi(BtiiBti—l) +Xk(BtiBtk—1)'
=1
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Proposition 8.7. Let H, K € 7 and a, b€ R. Then:
(i). (¢H+bK)-B)y=a(H-B)i+b(K-B);.
(ii). B(H - B);=0.
(iii). B((H - B)}) =E( [, H2ds) (Ito isometry).

(iv). ((H - B)¢)tepo,] is a continuous martingale.

(v). (H-B);=(H1p,y- B)r.

Proof. To verify (i) we write H and K using the same partition. Let H be of the form (8.2) and
set t;=t; A\t. To prove (ii) note that

E(H ’ B)t :Z E(XZ(Bil - Bfi_l)) = Z E(E(Xl(Bfi - Bii—1)|fti—l))

=1

since
E(Bil - BEi—l"Ftifl) :]E(Bfl - B{i—l) :E(Bti/\t - Bti—l/\t) =0.

Property (iii) follows from

E((HB)t)2: Z Z ]E(XZXJ(BE - B{i—l)(B{j - B{j—l»

i=1 j=1
n n—1 n

=Y E(X}(Bi,— Bi,_))+2)_ > E(X;X;(Bi,—Bi,_)(Bi,— Bi,_,)).
i=1 i=1 j=it1

For i < j we have

E(Xin(B{i_Bgi—l)(sz_B_‘ ) :]E(IE(X'LXj(B{i_B{i—1>(BZj_szfl)‘f'tj—l))
:E(X'LX](BZL_Bzz—l))E(BEJ_szfl|ftg—l):0

We also have

]E((Bil - Bzi_l)Q‘fti—l) :E((Bfl - Bii—1)2) = zl - ziflv (83)

we obtain



As a result,
n B B n t; n t; t
E((H-B))*=Y_ (EX?)(ti—ti1)=) IE)/ XPds=>" IE)/ H?ds=TFE | H2ds.
i=1 i=1 ti1 i=1 ti1 0

Let us turn to the proof of (iv). Continuity of ((H - B))¢ejo,r) follows immediately from the defi-
nition and continuity of the Brownian motion B. The process ((H - B)¢)¢e[o, 1) is clearly integrable
since by (iii) it is square-integrable. It remains to check that E((H - B)¢|Fs) = (H - B)s if s<t. By
Lemma 5.9 (f) it suffices to demonstrate this for ¢;_1 < s <t <t. For such s,t we have

E((H - B); — (H - B),|Fs) = E(X(B: — By)|Fs) = Xk B((B — By)|Fs) = XiB(By — B,) =0

since X, is Fy, ,-measurable and Fy, , C F.

To prove (v) we observe that if H € Ep if of the form (8.2) and ¢ € (51, tx], then

k—1

Hipg= Xidg, 0+ Xelg, g €Er
i=1
and (H - B);= (H1jg,4 - B)r. This finishes the proof. O

8.2 Isometric It6 integral

Definition 8.8. Let B(A) denote the Borel o-algebra of a topological space A. We say that a
process H = (Hy).cpo, ) measurable if the map

([0, T] < Q, B([0, T]) ® F) 3 (t,w) = Hy(w) € (R, B(R))

is measurable. The o-algebra G, over [0,T] x € generated by (s,t] x A with s<t and A€ F is
called the predictable o-algebra. We say that a process H = (Hy),cjo,1) predictable if the map

([0,T] x 2, Gpr) 3 (t,w) — Hi(w) € (R, B(R))

1s measurable.

Every predictable process is adapted. In practice, we often encounter adapted and continuous
processes. The following lemma demonstrates that such processes are predictable.

Lemma 8.9. If the process X = (X¢)ic(o,1) is adapted and continuous, then X is predictable.

Proof. Define

n—1
Xt(n) = Z XkT/n 1(kT/n,(k+1)T/n](t)a tel0,T], neN,.
k=0
Then X is predictable and from the continuity of X, it follows that X;™(w) — X,(w) for all

t€(0,7] and w € Q. The predictability of X follows from the fact that the pointwise limit of a
sequence of measurable functions is measurable. O
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Definition 8.10. We define Hy := L*([0,T] X Q, Gpr, A @ P), where X is the Lebesgue measure
and Gy, is the predictable o-algebra. That is Hr is the set of predictable processes H = (Ht)te[o,T]

such that
T
| H |3, := IE(/ H3d3><oo.
0

Simple predictable processes are predictable and square integrable. Hence, &r C Hr.

’ Lemma 8.11. Hr coincides with the closure Er of Er in L*([0,T] x Q, B([0,T]) ® F,A®P).

Proof. Since Hr is closed we have &7 C Hp. It remains to prove that £ is dense in Hp. Denote by
or the algebra generated by sets of the form (s,t] x A with A € F,. Elements of G5, are of the form
((to,t1] X A1) U...U((tn—1,tn] X Ay) for some 0=to<t;<...<t,=T and A; € F;,_,. Observe that:

(i). 1g € Er C Er for every set G € Gpr-
(ii). & is a vector space.

(iii). If f,, € Er is a sequence of non-negative functions that increase to a bounded function f, then

ngT.

It follows from the monotone class theorem that £ contains all bounded functions that are mea-
surable with respect to o(Gp,) = Gpr- O

Definition 8.12. Let M be the set of equivalence classes of indistinguishable continuous mar-
tingales M = (My)ie0,1) such that Mo=0 and

1M |[py = VEMZ < .

Lemma 8.13. My is a Hilbert space and we have

E( sup M?)\<4|M |3, (8.4)
te[0,T)

Proof. The bound (8.4) follows immediately from Doob’s inequality stated in Theorem 6.14 (b).
For the proof that My is a Hilbert space see Exercise 4, Sheet 3. O

Note that by Proposition 8.7 for all H € &7, the process (H - B)icjo,1) is a continuous martingale
such that

T
|H-B|%AT=E<<H-B>T>2=IE( / H?ds)=|H||%T<oo.
Hence, the map

IO:HTDgTBH'—’(H'B)te[ovT]EMT

is well-defined and is an isometry. In particular, the map I° is bounded. Since &r is dense in Hrp
the map I°: Er — M7 extends to the unique map I: Hy — M. We have I(H) = limnHOOIO(H("))
for every sequence (H("))n@N+ of elements of Ep converging to H € Hp. The map I: Hp— M is
called the It6 isometry.
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Definition 8.14. The integral of H € Hr with respect to the Brownian motion B is defined by

t
<H-B>te[o,ﬂz( / Hsst) — I(H)
0 te[0,7)

and satisfies the properties formulated in Proposition 8.7.

Remark 8.15. Note that we cannot say that the value of the integral at w depends only on the
paths t— Hy(w) and t+— Bi(w), as the integral is not defined pathwise.

Theorem 8.16. (Stopping of stochastic integral) Let 7 >0 be a stopping time and H € Hr.
Then a.s.

(H'B)T/\t:(l[o’T]H'B)t’ te0,T].

Proof. Step 1. Let H € Er and 7 takes only finitely many values. By possibly extending the sequence
of times we can assume that 7 takes values 0=ty <t;1 < ... <t,<T and H = 22;1 Xile, ot
Then we have

Lo (O He =Y Lo A0 Xi L el =Y Ly Xi L 1)) =D Tirsa 3 Xi L yt(1)-

i=1 i=1 i=1

Since 1>y, 3 X; is Fy,_,-measurable, 1o -1 € Er. We compute

(H1g,,-B); = Z Lir>t, 1 Xi(Biae — B, at)

i=1

= Z Z Lir=t 3 Xi(Bt;at — Bt at)

i=1 j=i

n J
= > A=ty Xi(Brae— B, i)
j=1 i=1

= Z Lr=t;3(H - B)g;ne=(H - B) 7t

j=1

Step 2. Let H € Ep and 7 arbitrary stopping time. Take a sequence of stopping times 7, taking
finitely many values such that 7, \ 7. By Step 1, (H - B), a¢+=(1j0,-,]H - B);. By the continuity of
the stochastic integral, (H - B);, at— (H - B):a¢ a.s. On the other hand, by linearity of the integral
and Itd isometry

t

]E((l[oﬂ_n]H- B)t — (1[07.,_]H~ B)t)zz]E((l(T,Tn]H-B)t)QZ]E/ 1(77%](8)[{82 ds— 0.
0

The convergence follows from the Lebesgue theorem, as the process 1(77%](5)H3 converges point-
wise to zero and is dominated by HZ2. Hence

a.s. L2(92)
(H - B)rpt——(H - B)r,pe= (10,7, H - B) ——— (10,71 H - B):.

That iS7 (H B)‘r/\t: (l[OT]H B)t
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Step 3. Let H € Hy and 7 arbitrary stopping time. We take H™ € & such that H™ — H in Hr.
From Step 2 we know that (H™ . B), ;= (I[O,T]H(”) - B);. We have

T
E((H-B)ypi— (H™ - B) 7)) 2 <AE((H — H™) - B)3.= 4IE/ (H,— H™)2ds—0,
0

where the inequality follows from Doob’s Theorem 6.14 applied to the martingale ((H — H™) - B).
Moreover,

t T
E((190,H - B): — (10,1 H™ - B);)2= ]E/ 10.7(s)(Hs — H™)?ds < ]E/ (H,— H™)2ds—0.
0 0

In consequence,

L2(2)

., La(Q
(H-B)yns 2 (H®. B), 0y = (1 H™ - B) —22

(1[O,T]H'B)t

Step 4. By the previous step we know that for every ¢ > 0 there is an event E; C () such that
P(E;)=1and (H - B)ra¢=(10,-)H - B); on the event E;. Let E = ﬂteQﬂ[O 00) Ey, where @ is the
set of rational numbers. Then E is an event such that P(£) =1 and (H - B);r¢= (1j0,7/H - B); on

the event E for all t € QN[0,00). The statement follows now from the continuity of the stochastic
integral. O

8.3 Localization

Suppose that f is a continuous function. Using It isometry we can define the stochastic integral

(Atf(Bs) st>te[07T] =I(f(Bs)sco.1)

only if (f(Bs))sejo,m) € Hr. Since (f(Bs))sejo, 1) is predictable, we only need to assume that
E(fOTf(BS)QdS) < 00, which is, unfortunately, a quite restrictive condition.

Example 8.17. For f(z)=exp(z*) we have

IE(/OT(f(Bs))st):IE</OTe2B§ds):/OTIE(eQB;L)ds:/OT A)\e%fl \E};Esdx ds=00

Thus, (eB?)Se[Oﬂ ¢ Hr despite the fact that the function z+— exp(z*) is smooth.

Definition 8.18. Let Hy 1oc be the space of equivalence classes of indistinguishable predictable
processes H = (Hy)ic0,1) such that fOTHg2 ds <00 a.s.

Definition 8.19. A non-decreasing sequence of stopping times (T,)nen, taking values in [0,T]
15 a localizing sequence for H € Hr 1oc if:

(1) H1jp ) € Hr for every n € Ny and
(2) P(Enen,m=T)=1.
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Proposition 8.20. Let H € Hr 1oc and define

Tp=inf {t €1[0,T]

t
/Hfds}n}/\T.
0

Then (Tn)nen, is a localizing sequence for H.

Proof. Since ([ Ot H? ds)¢>0 is a continuous adapted process, by Remark 6.10 the random variable
Tn is a stopping time. It is evident that 7, < 7,41. Moreover,

T
P(3n€N+Tn:T) :IP</ H?dt < OO) =1.
0

Finally, H1[y ] is predictable and

T Tn
IE(/ (Htl[om](t))?dt):]E(/ H,?dt) <n < oo.
0 0

This finishes the proof. O

Lemma 8.21. Suppose that H € Hr 1oc and (Tn)nen, is a localizing sequence for H. There exists
an event E of probability one such that on the event E we have

(H10,7,,)* B)ront=(H1jo 7, B)s,

for allt€1]0,T], n,m €Ny such that n<m.

Proof. By Theorem 8.16 and the identity H1(p 7, 1[0,r,] = H1[0,r,] for every n,m € N, such that
n <m, there exists an event E,, ,, of probability one such that the stated equality holds true for all

t€[0,T] and all sample points from E,, ,,. To conclude the proof we set E= E, ., O

n,meNL,n<m

Definition 8.22. Let H € Hr 1oc and (Tn)nen, be a localizing sequence for H. The integral of
H with respect to the Brownian motion B is a continuous process (H - B)ie(o,1) such that

tATR

(H'B>t/\7'n£ HS dBS:(H]_[Q’T"] 'B)t, te [O,T], TLEN+, (85)
0

holds true on an event of probability one.

Proposition 8.23. The process (H - B).c(o,1) salisfying the above conditions exists, is unique

up to indistinguishability and does not depend on the choice of the localizing sequence.

Proof. Let (7'n)n€]N+ be a localizing sequence and E be the event from Lemma 8.21. On the event
A, :=EnN{r, =T} we define

(HB)t: (Hl[O,Tn]B)ta tE[O,T}
The above definition is consistent since by Lemma 8.21 for all m >n we have

(H1p,r,)- B)i=(H1) ) B):
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on the event EN{7,=T}. Moreover, it guarantees that (8.5) is satisfied. Uniqueness is evident

since ]P(Une]N+ Ay) =1 by Definition 8.19 and Lemma 8.21. Continuity of (H - B);c[o,7] follows

from continuity of (H1o,r,)- B)¢ejo, 7). The fact that (H - B);c[o,1) does not depend on the choice
of a localizing sequence is a consequence of Theorem 8.16. O

Example 8.24. The integral X; = fg f(Bs) dBs is well-defined for any continuous function f:
R — R but need not be a martingale. For example,

¢
Xt:/ exp(BY) dB,
0

is well-defined but is not a martingale. One shows that E|X;| = co and EX} is not defined.

Definition 8.25. A process M=(M;);cjo, 1) is a local martingale if there exists a non-decreasing
sequence (Tn)nen, of stopping times such that lim, ... 7, =T a.s and such that (Min+,)ie(o, 1]
is a martingale. We say that the sequence (T,)nen, as above reduces the local martingale M.
Let Mt 10c be the set of equivalence classes of indistinguishable continuous local martingales
M = (My)iejo, ) such that Mo=0.

Proposition 8.26. For all H € Hr 1oc we have

(H - B)ieo,1) € M 10c-

Proof. Let (7,)nen, be as in Definition 8.22. By Definition 8.14 (H1o -,)- B)¢c(o,7] € M. Hence,
the statement follows immediately from Definition 8.22. O

9 Integral with respect to continuous local martingale

In the previous section, we defined the integral [ HydBs. It turns out that without much difficulty,
this definition can be generalized to [ HydM,, where (M});>¢ is a continuous martingale (or even
a continuous local martingale).

9.1 Doob-Meyer decomposition

The foundation of the stochastic integral construction with respect to a Brownian motion is that
(Bi)t>0 and (B? —t);>0 are martingales. It turns out that for any square-integrable continuous
martingale (M)¢>0, there exists a non-decreasing process (Y;);>0 such that (M} - Yi)i>o0 is a

martingale.

Theorem 9.1. (Doob-Meyer decomposition) Let M € M. There exists a process (M) =
((M)t)iep0,1) with continuous, non-decreasing paths such that (M)o=0 and (MZ—(M)¢)ie(o,1]
is a martingale. Moreover, the process (M) is uniquely determined up to indistinguishability.

Proof. We will only prove the uniqueness of the decomposition; the proof of existence can be found
in Sec. IV.1 of [RY04]. Assume that the processes (Y;)¢ejo, ) and (Z¢)ic(o,7] are non-decreasing
and (M,g2 — Yt)te[O,T] and (Mt2 — Z4)te(o,1) are martingales with continuous trajectories. The paths
of the process Y; — Z; have finite variation, and furthermore, Y; — Z; = (M? — Z;) — (M? — Y;) is a
continuous martingale. Therefore, by Proposition 7.13, Y; — Z; =0 for all t € [0, T a.s. O
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Example 9.2. If B is a Brownian motion, then (B);=t. Indeed,

E(B? —t|F,) =E(B2+2(B; — Bs)Bs+ (B; — Bs)> —t|F.) = B2+ 0+ (t —s) —t= B2 —s.

Remark 9.3. An integrable right-continuous adapted process (Xt):>0 is a martingale if and only
if, for every bounded stopping time 7 we have EX,; =EXj. See Problem 3, Sheet 5.

Proposition 9.4. Let H € Hy. Then ([ H dBS>t:fOtH82 ds.

Proof. We have to prove that the process M = (M;)¢¢[o,7) defined by

t 2 t
Mt</ Hsst) f/Hfds
0 0

is a martingale. We know that ( fg H, dBy)icpo,) is continuous, adapted and square integrable.
Hence, M is continuous, adapted and square integrable. For a bounded stopping time 7 € [0, T,
by Theorem 8.16 and the It6 isometry we obtain

IE((ATHSdBSY):IE<(AT1[O7T](S) HSdBS>2):E</JT1[O,T](s) HEds)zE(/)THfds)

Therefore,
T 2 T
]EMT:]E<</ Hsst> —/ Hfds)zozEMo.
0 0

The statement follows from Remark 9.3. O

Remark 9.5. If M = (M;);c(o,7] is a continuous bounded martingale, then
n
<M>t = lim Z ‘Mtz - Mti—l‘Q
T

in mean square, where 0= t(()") < t§”) <...< tSL") =t < T are arbitrary such that

li ¢t ¢y =,
nl»H;oZE{rlr,laX,n}( ¢ 1_1)

See Exercise 3, Sheet 7.

9.2 Integral for elementary processes

Definition 9.6. The integral of a simple predictable process H € Er of the form

Ht: Z XZ l(tifl,ti]
=1

with respect to M € M is defined by

n

t
(HM)tE/ HdeSI:Z Xi(Mti/\t*Mti_l/\t); tE[O,T]
0 i=1
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Proposition 9.7. Let M e My, H, K € Er and a,b€R. Then:
(i). (aH+bK) M)y=a(H M)+ b(K-M);.
(). E(H-M);=0.
(iii). E((H - M)}) =B [} H2d(M)..

(iv). ((H-M)t)iejo, 1) s a continuous martingale.

(v). (H-M),;=(H1g - M)r.

Proof. The proof is almost identical to the proof of Proposition 8.7. To prove Item (iii) we use
the following observation

E((My— M| F) = BE(M{ — (M| Fo) + E(M >|7) 2M, B(M;| Fo) + M
= M7 — (M) +B(M )| Fo) — MZ=BE((M), — (M),|F),

which is a generalization of (8.3). O

9.3 Isometric It integral

Definition 9.8. For M € My let H(M) be the space of predictable processes H = (Hy)¢eo,1]

such that
T
1H e oy = \/E< [mza0n,) <

Lemma 9.9. ErCHr(M) is dense.

Proof. The statement can be proved along the lines of the proof of Lemma 8.11. O

Note that by Proposition 9.7 for all M € My and H € Er, the process (H - M) is a continuous
martingale such that

I M = B(H A0 = B [ B2 )= |y a0y <
Hence, the map
Iy Hr(M) D Er> Hw— (H - B)icpo,r) € Mr
is well-defined and is an isometry. In particular, the map I° is bounded. Since &r is dense in

Hr the map I;: Er — My extends to the unique map Iy Hr(M) — My, We have Iy (H) =
lim,, oo I5r(H™) for every sequence (H"),en, of elements of & converging to H € Hp(M).
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Definition 9.10. The integral of H € Hr(M) with respect to M € Mr is defined by

¢
(H-M)icpo,r = (/ Hdes> =Ty (H)
0 0,7

te|

and satisfies the properties formulated in Proposition 9.7.

9.4 Localization

Notation 9.11. For a stochastic process X = (Xi)1>0 and a stopping time 7 >0 we denote by
X7 the stopped process (Xinr)t>o0-

’ Lemma 9.12. For all M € M7 and all stopping times T we have M™ € My and (M™)=(M)".

Proof. We know that M7 is a continuous martingale. By Theorem 6.12 and the Jensen inequality,
E(MtT>2 = ]EME/\T = E(E(MT‘ft/\T)2) < E(E(M%‘}—t/\r)) = E(MT>
Thus, M™ € My. The process (M )7 starts from zero, has continuous, non-decreasing paths and
(M7)2 = (M)7=(M? = (M))"

is a martingale, so (M )7 satisfies all the conditions of the definition of (MT7). O

We can generalize the Doob-Meyer decomposition to the case of continuous local martingales.

Proposition 9.13. For all M € Mr ). there exists a process (M) = ((M)s)ecjo,m) with contin-
uous, non-decreasing paths such that (M)o=0 and (M} — (M);)t>0 € Mr 10c. Moreover, the
process (M) is uniquely determined up to indistinguishability.

Proof. Since M € M 1,c, there exists an increasing sequence of stopping times 7,, converging to
T such that M ™ is a martingale. Define

Tn:=Inf{t >0]| \M;'"| >n}.

Then (M™)™ = M™ where 7, := 7, A 7, is a bounded martingale. Hence, M7 € M. Define
y(n) — (M™), then for n <m,

YO = (M) = (7)) = (M) = (Y ),

Hence, there exists a continuous process Y = (Y});c[o, 7] satisfying Y; = Yt(n) on the events {t <7,},
n € INy. Obviously, Yo=Y ™=, Moreover, Y has non-decreasing paths and

<M2 _ Y)Tn — (MTn)2 — Y™ = (MTT,,)Q _ <MT’n,>)

so M?—Y is a continuous local martingale on [0, T]. This proves existence.
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To show uniqueness, let Y and Y be continuous processes with non-decreasing trajectories such that
Yo=Yy=0and M2—Y and M2—Y are local martingales. There exists a sequence of stopping times
7w /T such that (M2—Y)™ and (M2 —Y)™ are martingales. The process (Y —Y)™ is therefore
a martingale with bounded variation. Thus, by Proposition 7.13 it is constant. Consequently,
Y™ =Y. Upon taking the limit n— oo, we obtain Y =Y. O

Along the lines of the proof of Theorem 8.16, one proves a stopping theorem for the stochastic
integral with respect to square-integrable martingales.

Theorem 9.14. Let 7 >0 be a stopping time, M € My and H € Hp(M). Then a.s.

(H-M)p=(H1g - M7),,  te[0,T].

Definition 9.15. For M € My 1oc let Hr 1oc(M) be the space of equivalence classes of indistin-
guishable predictable processes H = (Hy).c(o, 1) such that fOTHSQd(M>S <00 a.s.

Definition 9.16. Let MeMr 1oc, H € Hr 10c(M) and (Tn)nen, be an increasing sequence of
stopping times converging to T such that M™ € Mt and 1o ;,|H € Hp(M™). The integral of H
with respect to M is a continuous process (H'M)te[o,T] such that

tATR
(H-M)ipr, = HydM,=(H1lq,, - M™),,  t€[0,T], neNy,
0

holds true on an event of probability one.

Following the proof of Proposition 8.23 it is not difficult to show that the integral (H - M);¢co,1] is
well-defined, unique (up to indistinguishability) and does not depend on the choice of the sequence
of stopping times 7,,. The following fact generalizing Theorem 9.14 is true.

Theorem 9.17. Let 7 >0 be a stopping time, M € My 10c and H € Hy 10c(M). Then a.s.

(H M)-,—/\t: (Hl[O,‘r] . M)t: (Hl[gﬂ-] . MT)t: (HMT)t te [O,T]

It is also possible to show that the constructions of the integral on [0, 7] and [0, T] are consistent
for arbitrary T'< T, that is (H - M)efo,) coincides with (H - M),y 7 for all £ € [0,T]. This allows
to define the process (H - M) for all H = (H¢)s>0 and M = (M;);>0 such that (Hy)eo,71 € Hr loc
and (My)¢ejo,1)EMT 10 for all T'€ (0, 00).

10 Quadratic covariation

The quadratic covariation is defined not only for a single martingale, but also for a pair of mar-
tingales.

Definition 10.1. The quadratic covariation of two continuous local martingales M and N is the
process (M, N) defined by the formula:

(M, N)y=2{M+N) = (M~ N).
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Theorem 10.2. Let M, N € My (resp. My o). Then (M, N) is the unique process on [0,
T with continuous paths of bounded variation such that (M,N)o=0 and MN — (M,N) is a
martingale (resp. a local martingale) on [0,T].

Proof. Uniqueness is proved as for (M), and the mentioned properties follow from the identity

MN = (M, N)=2((M +N)*~ (M + N)) = 1((M ~ N}~ (M = N)). 0

N

Theorem 10.3. Let M, N € My 1o.. We have
(a) (M, M)=(M)=(-M),
(b). (M,N)=(N,M),
(c). (M — Mo, N)=(M,N — No)= (M — My, N — No) = (M, N),
(d). (N, M) (M,N) is a bilinear map,

(e). (M",N")=(M,N)"=(M,N")={(M,N)7 for every stopping time T,

(f). If H € Hr 10c(M) and G € Hr 10c(N), then <fHdM,deN>:fHGd<M,N>
Proof. See Exercise 1, Sheet 8. O

11 Further properties of the stochastic integral

In this section, we will show a number of important properties of the stochastic integral, which
will allow us later to prove the It6 formula.

11.1 Dominated convergence for stochastic integrals

Theorem 11.1. (Dominated convergence) Let M € My joc, G € Hr 10e(M) and H™ =

(Ht(”))t>() be a sequence of predictable processes such that a.s. limn_)ooHt(") =H; and \Ht(”)| <Gy
for allt€[0,T). Then H™ He Hr 10c(M) and for all t €0, T]

t t
lim [ HdM, = / H, dM,
0

n— oo 0

in probability.
Proof. The process H is predictable as the limit of predictable processes. For ¢ € [0, T] we have

/H2 /(H<" é\/ G2d( a.s.

Hence, H™ H e Hr 10c(M) and the integrals appearing in the statement of the theorem are well-
defined.
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Step 1. Suppose that M € Mp and G € Hp(M). We have

lim H™W=H,  (H™ - H;)?><4G3, HGHHT(M):IE/G%d<M>t<oo.

n— o0

Hence, by the Lebesgue dominated convergence theorem for the integral with respect to a function
of a bounded variation we have lim,, o H™ — H in Hp(M). Consequently, by the Ité isometry

t R t
/ H™an, 2, / H,dM,
0 0

as n— 00. To conclude we note that convergence in mean square implies convergence in probability.

Step 2. Let (7';6)16611\1+ be an increasing sequence of stopping times such that limg_, o7 =T and
M™e Mg, 1j,)G€Hp(M™).
Since
Lo, gH™ < 1)9,-,G,
it follows that 1jg ,H ™ € Hr(M™). By Theorem 9.17 and Step 1 we obtain

tATE tATE

(n) ! (n) L) [*
H™dM, = / 10,7 (s) H™ dyrs =2 / 10, He M = H,dM,
0 0

0 0

as n— o0o. Consequently, on the event {7, >t} we have

K (n) L*(Q) t
H,VdM,—— [ H,dM,
0 0

as n— oo. Hence, for every 6 >0 and k€ Ny,

lim An,k:07 An_’ktﬂ)(Tth and

t t
]P< / H™dM, — / H,dM,
0 0

To conclude we choose k € N big enough so that P(r; <t) <e/2 and then n € N big enough so
that A, r<e/2. O

>

t t
/ H™dM, - / H,dM,
0 0

Observe that

> 5) <Anp+P(rp<t).

11.2 Integration by substitution

Lemma 11.2. Let 0<u<t<T, M € Mr 10c, HEHr 10c(M) and Y be a bounded F,,-measurable
random variable. Then

t t
/ YH.dM,=Y | H.dM.,

u

where fiHS dM, = f;l(%t](s) H,dM,.
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Proof. Step 1. Let M € My and H € Ep. By possibly extending the sequence of times we can
assume that H = ZLI Xi1l(,_,,t;) and u=1g. Since Y is Fy-measurable we have Y H, € £ and
¢ n n t
[ YHAM = S YXi(Muni= Mo n)=Y D" XMuns= M) =Y [ H.M.
u u

i=k+1 i=k+1

Step 2. Let M € My and H € Hp(M). We take H™ € &p such that H™ — H in Hp(M). From
Step 1 we know that szHs(”) dM; = Yfng(") dM;. Let C' >0 be a deterministic constant such
that |Y| < C. By the It6 isometry

t 2 t
IE(/Y(HS—HS(”))dMS> :IE/ Y2(Hy— H™)d(M)s <C?|H — H™|3,, (1) — 0.
u 0
Similarly,
t 2 t 2
]E(Y/ (HSH§">)dMS) <C2E</ (HSHg"))dMS> <C?|H —H™|2,, (1) — 0.

Hence, by the linearity of the stochastic integral we obtain

t t t t
/YHSw)dMS&/ YHSF”)dMg:y/ HSF")dMgﬂY/ H,dM,.

Step 3. Let M € M7 1oc and H € Hr 1oc(M). Let (7,)nen, be an increasing sequence of stopping
times converging to T" a.s. such that M™ € Mz and 1y 1H € H7(M™). By Step 2 we have

t t
/ L.0,y(s) YH, dM™ =Y / 10,0,y (s) H, dM™.

By Theorem 9.17 we obtain

tATn tATH
/ YH,dM,=Y H,dM,.

u

To complete the proof we take the limit n — co. O

Definition 11.3. A process H = (H¢)iejo,1) s locally bounded if there exists a sequence of
stopping times (Tn)nen, such that 7, /' T a.s. and for all n € N, the process (Hipr, — Ho)i>0 is
bounded.

Remark 11.4. Every continuous, adapted process is locally bounded since one can take

To=1nf{t €[0,T]||H¢— Ho| Zn} AT.

Theorem 11.5. (Integration by substitution) (i) If N € My, H € Hr(N), G is a bounded
predictable process and M = (H - N), then Ge Hp(M), HG € Hr(N) and (G-M)=(GH-N).

(i5) If N € Mr 10c, HEHr 10e(N), G is a locally bounded predictable process and M = (H - N),
then G € Hr 10d(M), HG € Hr 10¢(N) and (GH-N)=(G-M).
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Remark 11.6. Note that (GH-N)= (G- M) is equivalent to foth H, st:ngs dM;, or more
suggestively, Hy;dN;= d(f(;s HydN;) =dM;.

Proof. First, assume that G is a simple predictable process of the form G = Z?:l Xilg, ¢ Then
t n
[ Gearts = 37 X (M= Min)
0 i=1

n t t
— ZX(/ 1[o7ti71]HSst—/ I[O,ti]HSst)
i=1 0 0

n t
= Z Xz/ 1(ti71’ti](8)Hstg
0

=1

n t
= Z‘/‘OXil(tiflyti](S)Hst
=1

tn t
/ZXJ(“_M(S) Hsts:/ G H,dNs,,
031 0

where the fourth equality above follows from Lemma 11.2.

a) Let G be a bounded predictable process and C' >0 be a deterministic constant such that |G| < C.
Then

T T
IE/ G§d<M>S<C21E/ d(M)s=C?*E(M)r=C?EM% < co.
0 0
Thus, G € Hp(M). By a similar argument, G H € Hp(N). We can find G™ € & such that
lim,, . oG™ =G in Hp(M). Moreover, we can assume that |G| <C (if G™ does not sat-

isfy this bound, take (G™ A C)V (—=C'), which still converges to G in Hr(M)). Note that

T
IGH — GWH 2, ) = ]E/ (GsHy— G H, )2 A(N),
0

T
]E/ (Gs—GM)2HZA(N),
0

T
E / (G — GL)2 (M) = (|G — G| ar) — 0,
0

where we used the identity (M);= ng? d{N)s, which follows from Theorem 10.3 (f).
Hence, lim,,...G"™H =GH in Hr(N). As a result, we have

t t t
0 0 0

b) First, note that

t t t t
/GodMezGo/ dMgz/Hngsz/Gngng-
0 0 0 0

Hence, by considering G — G instead of G we can assume without loss of generality that Go=0.
Let 7, /T be such that G™ is bounded, N™ € My, and H1| ;,) € Hp(N™). Then by Theorem 9.17
we get

tATH
th:/ HSdNS:/l[OmL](s) H,dNT".
0
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Therefore, by Theorem 9.17 and part a) we have

tAt, t
GodM, = / 10.1,)(5) G dMT"
0 0
t
= / 1j0,7,1(s) Gs 1o, ,,)(s) Hs ANJ™
0
t tAty,
_ / 1(0.)(5) GaH AN = [ G.H,dN,.
0 0
We complete the proof by taking the limit n — oo. O

12 Continuous semimartingales

Definition 12.1. Let Ar denote the space of continuous, adapted processes A= (A¢)icio,r) of
bounded variation such that Ag=0. Recall that M 1oc denotes the space of continuous local
martingales M = (My),co,1) such that Mo=0. A process Z = (Z)¢e(o,1) is called a continuous

semimartingale if
Z=Zo+M+A,

where Zy is an Fo-measurable random variable, M € Mrp 1. and A€ Ar.

Remark 12.2. The decomposition of a semimartingale is unique (up to indistinguishability). If
Z=Zop+M+A=Zy+M'+ A’, then M — M'=A"— A is a continuous local martingale starting

from zero with bounded variation on [0, ] so it is identically zero.

Example 12.3. An It6 process, i.e., a process of the form Z; = Z0+ngs dBg +f5Y; ds, is a

semimartingale.

Example 12.4. Let N be a square integrable martingale. Then by Theorem 9.1 M = N2 — (N)
is a martingale. Hence, N?>= N¢ + (M — N§) + (N) is a semimartingale.

Definition 12.5. Let Z=Zy+ M + A be a continuous semimartingale and Hr 10c(Z) denote the
space consisting of H € Hr 10c(M) such that H € L*([0, T}, |a|) a.s. The stochastic integral of
H € Hr 10c(Z) with respect to Z is a continuous semimartingale (H - Z) defined by

t t t
(H~Z)tz/ H,dZ,:= | H,dM,+ | H,dA,,
0 0

0

where the first integral is a stochastic integral and the second is an integral with respect to a

process of bounded variation.

Theorem 12.6. (Integration by substitution) Let Z=Zy+ M + A be a continuous semi-
martingale, H € Hr 10c(Z), G be a locally bounded predictable process and Z'= (H - Z). Then
G € HroelZ'), HG € Hr 100 Z) and (GH - Z) = (G- Z"). Equivalently,

t t t
/GsHstsz/ G,dZ., Zg:/ H,dZ,.
0 0 0

Proof. We use the integration by substitution theorem for the stochastic integral and a similar

result for the integral with respect to a process of bounded variation. O
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Theorem 12.7. (Integration by parts) If Z=Zy+ M + A and Z' = Z}+ M’'+ A’ are contin-
uous semimartingales, then ZZ' is also a semimartingale and

t t
ZtZt':ZoZ(H/ stzg+/ 2047+ (M, M"),.
0 0

Proof. See Exercise 1, Sheet 8 for the proof for Z=Zy+ M and Z'=Zy+ M'. O

Remark 12.8. For example, for a Brownian motion B we have

K 1 1 1
[ BB = (Bt~ B — 5(B) = 5B )
0

On the other hand, for any A € Ar we have ngsdAs zé(A% — A}). Moreover, if H,G € Hr 1oc,
M= [{H,dB, and N;= [} G, dB,, then

t t t t t
MtNtz/ Msts+/ Nngs+<M,N>t:/ MsGsst+/ NsHsst+/ H,G,ds.
0 0 0 0 0
For M € Mr 1oc and A € Ar we have

t t
MtAt:/ A, dMS+/ M, dA,
0 0
and for A, K € Ar we have

t t
Ath:/ A sz—|—/ KsdAs.
0 0

The last integration by parts formula is a straightforward consequence of the definition of the
Riemann-Stieltjes integral.

13 It6 formula

Computing the stochastic integral by following its definition is typically very cumbersome. This
is similar to the usual approach used for the ordinary Riemann or Lebesgue integrals, where the
integral is initially defined through approximations with step functions, but more efficient and
intuitive computational techniques are later introduced. In this lecture, we will prove a fundamental
theorem for stochastic analysis. It shows that the class of continuous semimartingales is closed
under smooth functions.

Theorem 13.1. (Itd’s formula) Assume that Z =Zy+ M + A is a continuous semimartingale
and f € C*(R). Then f(Z) is also a semimartingale and

1z =120+ [ Pz [z an.

Remark 13.2. Let (B;);>0 be a Brownian motion and f € C?(R). Since (B);=t, for every t >0
we have

sy~ 180 = [ By [ sy as,
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where [ f g B,)dB; is the stochastic integral and [ f”(Bs)ds is the Lebesgue or Riemann integral.

The term 3 f of"(Bs) ds appears because the quadratic variation of the Brownian motion is not
zero. Note that if A is of bounded variation, then

F(A) — F(Ao) = /0 "F(A) da,

Example 13.3. Let f(z)=e”. Then Itd’s formula gives

t t
er—eB":/eBSst—i—l/ eBsds
0 2 Jo

Let Xy=ePt, then X, =1+ [, X,dB,+ [, X, ds, or equivalently

dX,= X,dB; + éXt dt
Xo=1.

Proof. The integrals in (13.1) are well-defined because the processes f'(Zs) and f”(Z,) are con-
tinuous, f'(Zs) € Hr1oc(M) and f"(Zs) € LY([0,T], (M)).

Step 1. Let Z be a bounded semimartingale and f be a polynomial. By linearity of both sides
of (13.1), it suffices to consider the case when f(x)=2z". We will show this formula by induction
on n. For n=0, the thesis is obvious. Assume that (13.1) holds for f(z)=2x", we will show it for

g(x) =z f(z).

By induction hypothesis f(Z;) is a semimartingale with the decomposition

1(2) = f(Z) /f dz+/f"

F(Z0) + /f dM+</f )dd,+ L /Otf”(Zs)d(M>S>.

Using integration by parts we obtain
920 =20(2) =20 f(20)+ [ zarz+ [ sz ([ ryaar)
Using integration by substitution we obtain
[zasz)= [ (2 1@z yz. @) aon.).
By Theorem 10.3 (f) we have

(J ) - [

Applying the above identities and noting that ¢'(z) = f(z) + « f'(z) and ¢"(z)=2f'(x) +x f"(z)
we arrive at

o) =g+ [ 9 @)az+y [[o'z) ).

This proves the induction step.
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Step 2. Let Z be a bounded semimartingale and f € C?(IR) be arbitrary. Denote by C' >0 a
deterministic constant such that |Z;] < C. There exists a sequence of polynomials f, such that

| fu(@) = f@)], [ fal) = £/(@)], 1 frl (@) = £7(2)] <% for z € [-C, C].
Moreover, letting K =supye—c,c) (|.f/(z)| V[ f"(x)]), we have

[faZ)l< sup |fa(@)|<1+K,  |f(Z)I< sup [fi(@)|<1+K.
ze[—-C,C) ze[-C,C)

Hence, from Lebesgue’s dominated convergence theorem (for ordinary and stochastic integrals),
[(Zy) = lim fn(Zy)
n—oo

~ i (s + [rz)azg [z aon.)

=f(Zo) +/Otf’(zs) dZs+%/0tf”(Zs)d<M>s.

Step 3. Let Z = Zy+ M + A be a continuous semimartingale such that Zj is bounded and f € C?(R).
In this case, we define

Tp:=Inf{t >0 |Z¢ Zn}AT.

Since Zj is bounded and Z is continuous, lim,, . 7, =T a.s. Moreover, Z™ := Zy+ M™ + A™ is
a continuous bounded semimartingale and lim,, ., .,Z;" = Z; a.s. By Step 2, (13.1) holds for Z™
and by Theorem 9.17 and Theorem 10.3 (e) we have

t t
1Zm) =1z + [z g [ e aar),

=)+ [ Vo) P23 024 [ Lo (o) 72 A,
t

1 [t
1[0,Tn,](5)f/(ZS) dZ, +§/o 1[07Tn](8)f//(Zs) d(M)s

tATR 1

FEazog [ a.

—f(Z0) + /

0

—F(Zo) + /

0
Taking the limit n — oo we obtained (13.1).

Step 4. To prove (13.1) in the general case let Z\" :=(ZyAn)V (—n) and Z(™ = Zé”) + M+ A.
Note that ngstS = ngSdZs("). Since we already know that (13.1) holds when Z; is bounded,

t t
1) = 128+ [ £ azer g [ 1120 a0,

We shall prove convergence as n— oo of every term appearing in the above equation. It is evident
that limnﬂoof(Zgn)) = f(Z:) a.s (and similarly for f’ and f”). We observe that

|12 < sup |f(287)| =Y.
neNL

The process Y is predictable as the supremum of predictable processes, and

sup | Z\™| < | Zo| + sup| My|+sup | 45| < 00 a.s.

s<t s<t s<t
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Hence, from the continuity of f’ we infer that sups<; |Ys| < oo a.s. and Y € Hy 10c(M). By the
dominated convergence theorem for stochastic integrals,

lim f (Z"™ydM, = / 'z in probability.

n— o0

Moreover, by the dominated convergence theorem for ordinary integrals,

lim f Z(" dA,= / 'z a.s.
Similarly, supy, sups<: | f ( )| < 0 a.s., and again applying the dominated convergence theorem

for ordinary integrals, we get

¢ ¢
lim [ f(Z8)d(M),= / F(Zs)d(M),  as.
To complete the proof we pass to the limit n— oo in (13.3). O

In a similar way as in the one-dimensional case, we can prove the multidimensional version of It6’s
theorem.

Theorem 13.4. Assume that f:Rs x RY— R is a function that is C* in Rs and C? in RY
and Z=(Z",...,Z%), where Z'=Z§+ M+ A® are continuous semimartingales for i€ {1,...,d}.
Then (f(t, Zt))t>0 is a semimartingale and

f(t,Zy) = f(0,2o) /a (s, Zs) ds+2/8f5Z ydZ!

53, [ st a0

111

Example 13.5. Let B be a Brownian motion. The application of It6’s formula yields

ol )
= exp(DBy) —%At (B ——) ds+/texp(Bs—%) st-F%/OteXp(BS—%) ds

t
- 1+/exp(Bs—£)dBS: X, dB,.
0 2 0

Xy

That is, X satisfies the following stochastic differential equation

dX;=X;dB;
Xo=1.

Note that for all T'> 0 we have

E (/OTXSst> = ATIE(exp@Bs —5))ds < oo.

Hence, X € Hr and since X = f X;dB; we conclude that X € My is a square integrable martingale.
We call X the exponential martingale associated with B.
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Example 13.6. Let B = (B',..., B be a vector of d independent Brownian motions and f €
C?(R%). Note that for i+ j we have

E(B;B}|F,) = E(Bi|F,)E(B]|F,) = BIB..

Thus, the process (BiB] —td;j)i>0 is a martingale. This proves that (B?, B/); =td;; and by

multidimensional Itd’s formula

£(B) = (B +Z [ pyapi+y [(@apm)as

where A is the Laplace operator.

14 Stochastic differential equations

Definition 14.1. Let (Q,F, P) be a probability space, (Fi)1>0 a filtration such that Fy contains
all null events and (By)i>o0 a Brownian motion adapted to (Fi)i>o such that (Biys— Bi)sso 1S
independent of F; for all t >0. Assume that b,o:[0,00) x R— R are continuous functions, and
x is an Fo-measurable random variable. We say that the process X = (Xi)iepo, 1) is a strong
solution of the stochastic differential equation (SDE)

dXt:b(t7Xt) dt-i—U(t,Xt) d.Bt7 onx, (141)

if X is a continuous and adapted process such that

t t
Xt:x—&—/ b(s, Xs) ds—i—/ o(s,Xs)dBs, te€l[0,T]. (14.2)
0 0

Remark 14.2. The assumption that b and ¢ are continuous functions is not necessary and it is
possible to study more general stochastic differential equations. Note that the continuity of b and
o automatically implies the measurability and local boundedness of the processes b(s, X;) and o (s,
X,), which guarantees that the integrals appearing in (14.2) are well defined.

Remark 14.3. The process X solving equation (14.1) is called a diffusion with the diffusion
coefficient ¢ and the drift coefficient b.

Remark 14.4. Note that the It6 formula can be equivalently written as an SDE

_ofF
2 Ox'ox?

i,j=1

df(t, Z;) = 8 (t, Zy) dt+z af (t, Z:)dZ§ + (t, Z¢) d(M?, M),

Example 14.5. The Black-Scholes SDE
dXt = [,LXt dt -+ O'Xt dBt

models the dynamics of a financial asset, such as a stock, under the assumptions of continuous
trading and no arbitrage.

e X, is the price of the asset at time ¢.
e 1 €R is the drift coefficient (representing the expected return rate).

e o >0 is the volatility coefficient (measuring the asset’s randomness or risk).
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Note that in financial markets it is natural to assume that the changes in price are proportional
to the current price.

Assumption 14.6. The functions b and o (i) have sublinear growth at infinity and (ii) are
globally Lipschitz, that is,

(). [b(t, )| LA+ |z]),  |o(t,2)] < L1+ |z]),

(i) b(t,x) =b(t,y)| < Llz —yl,  lo(t,z)—o(t,y)| <Lz -y

for allz,y€R, t€[0,T]. In addition, (i1i) x is a square-integrable random variable.
Example 14.7. Let b(t,2) =24/z and o(¢,z) =0. The function b is not Lipschitz continuous at
2 =0. The uniqueness of solutions fails since the functions

X;=0 and X,=t2

are both solutions of dX; =24/|X;|dt with Xo=0.

Example 14.8. Let b(t,z) =22 and o(t,z) =0. The function b is smooth but it is not globally
Lipschitz and grows faster than linearly. For any initial value > 0, the function

1

L
x

X, =

solves dX; = Xf dt with Xo =2 and it can be shown that there is no other solution. However, the
function X; blows up as t — 1/x, so the solution does not exist for all time ¢ > 0.

Definition 14.9. For continuous adapted processes X the process M(X) = (M(X))¢ejo,1) is
defined by

t t

b(s, Xs) ds+/ o(s,Xs)dBs.
0

Mt(X)::er/

0

Observe that a process X is a solution of the stochastic differential equation (14.1) if and only if
it is a fixed point of the map M introduced above, that is, M(X)=X.

Definition 14.10. Let St denote the Banach space of continuous and adapted processes (Xt)ie(o, 1)
such that

IXNspi=(E[ sup x2])"* <o
s€[0,T]

Remark 14.11. To prove that the space St is complete one uses the fact that uniform convergence
preserves continuity.

Lemma 14.12. The map M: Sy — Sy is well-defined. Moreover, for all t€[0,T] and X,Y € Sp
we have

t
IM(X) - M(Y)||%, <C / IX — V|3, du

with C =2L2(T +4).
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Proof. Using the elementary inequality (a + b)? < 2a%+ 2b% we obtain

S

(otr X) - 0(7“,Y7.))dB,>

(My(X) = My(Y))? = (/Os(b(r,X,.)—b(r,Y,.))err/
< 2(/()S(b(T,XT)_b(r7)/:r))dr>2+2</OS(U(T7XT)—O'(','-71/T)) dBr>2.

Using the Cauchy-Schwartz inequality and Assumption 14.6 (ii) we estimate

B sup </Os(b(r,X,)_b(r,y,.))drﬂ < tE</0t|b(r,X,.)_b<r,n)l2d7«)

s€(0,t]
t
< tL2]E</ |XrYr2dr).
0

Similarly, by the Doob inequality stated in Theorem 6.14 (b), the It6 isometry and Assumption 14.6

(ii) we obtain

E| sup (/OS(U(T,XT)—U(T,Yr))dB7->2 < z;]E(/()t((;(r,)(,.)—0(7«75f,.))<1Br>2

s€0,t]

= 41E(At(a(r,XT) 0(?‘7Yr))2dr>

t
4L2E</ |X,._Y,.2dr).
0

N

This proves

t
IE[ sup (MS(X)MS(Y))Q] < C’/ ]E[ sup (Xsys)ﬂ du,
s€[0,t] 0 s€0,u]

which implies the desired bound. O

Lemma 14.13. In the setting of the above lemma we have

2 _ oM

Agn)::HMo...oM(X)—Mo...oM(Y) <—— X -Y%,.
{ ~ N—— n! )

n

t

Proof. By Lemma 14.12 it holds that
tn 1 tn fin-1 9
A < 0/ A§:j1>dtn_1<02/ / A2 A, o dt,
0 0 0

tn tn—1 t1
< Cn/ / / Agg)dto...dtnfzdtnfl
o Jo 0

tn fltn-1 t1 "in
< AE?)C"/ / / dty. ..ty 5t = AP 1,
o Jo 0

n!

which proves the claim. O

Theorem 14.14. There exists exactly one (up to indistinguishability) solution X of the stochastic
differential equation (14.1). Moreover, X € St.
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Proof of existence. We use Picard’s iteration method, that is, we define recursively
x@=o0, x"TV=MX™M), neN,

Note that

t t

b(s,0)ds+ / o(s,0)dBs.

XM =My0) ==z + /
0

0

Hence, by (a+b+c)? < 3a?+3b%+ 3¢2, the Doob inequality, the It6 isometry and Assumption 14.6

(i) and (iii) we obtain
¢ 2 ¢ 2
sup (/ b(s,0) ds) sup (/ o(s,0) dBS>
tefo,7) \Jo telo,7] \Jo

T
o(s, 0)2d8) <3Ez?+3L2T(T +4) < o0.

XD - X©)3 < 3Ez?+3E +3E

< 3Ez?2+3L2T?+ 121E</
0

By Lemma 14.13 we have

- 1 1 0 — [(CnTm\!/?
Z | XD — x(M)g < | XD — X< )HSTZ < - > < 00.

n=0 n=0

Hence, the sequence (X ™), cn, is Cauchy in the norm |-||s,. We denote by X € Sy its limit. By
Lemma 14.12 we have

[M(X)-MY)|%,<CT | X -Y|%,
which implies that the map M is continuous. Hence,

M(X)= lim M(X™)= lim X+ =X,

n— o0 n— oo

Consequently, X € St is a solution of (14.1). O

Remark 14.15. If X,Y € Sy are such that M (X)=X and M(Y) =Y, then by Lemma 14.13 we

have

OTLTH
n!

X =Y5, < |X =Y,

Taking n € N big enough we conclude || X —Y||%, <0, which implies that X =Y. This proves
uniqueness of solutions of (14.1) in Sy. However, the uniqueness claimed in Theorem 14.14 is more
general.

Proof of uniqueness. Suppose that X,Y are continuous adapted processes solving (14.1). Define
Tm i =nf{t 20| | X —z| V|V —2| =m}, m € Ny.

Note that X7 Y™ € St since | X{™ — 2|V |Y,™ — 2| <m and Ex? < oo by Assumption 14.6 (iii).
Define the map

t t
Mt(m)(X) ::x+/ 1i0,7,.1(s) b(s, Xs) ds+/ 10,7,.1(s) (s, X) dBs.
0 0
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Using Theorem 9.17 and the fact that X and Y are solutions of (14.1) we obtain
¢ t
Mt(m)(XTm) =z +/ 1j0,7,.1(s) b(s, X) ds + / 10,,,)(s) o(s, Xs) dBs
0 0
tA T tATm
= :r—l—/ b(s,Xs)ds—i—/ o(s,X5)dBs=X[™
0 0

and the same for Y. We conclude that M(™(X7™) = X7 and M) (Y ") =Y. The map
M ™) satisfies the bounds stated in Lemmas 14.12 and 14.13 as can be easily checked by following
the proofs of these lemmas. Hence, by the argument from Remark 14.15 we have X" =Y " for
all m € N, which implies that X =Y. |

15 Girsanov theorem

We assume that (2, F,IP) is a fixed probability space. We will construct other probability measure
n (2, F) under which a Brownian motion with drift has the same distribution as a standard

Brownian motion.

Notation 15.1. By EX we always mean the expectation with respect to IP, while the expectation
of X with respect to another measure @ will be denoted by EqX. Note that if Q(A)=E(142)
for some Z >0 such that EZ =1, then EqX =E(XZ).

We begin with the following motivating example.

Example 15.2. Let X;, Xo,..., X,, be independent A/(0, 1)-random variables and let py,..., un € R
be deterministic. We define a new measure Q,, on (2, F) by

i=1

n n
Qn(A)=E(14 Z,) forall AeF,  where Zn;exp<zuixi%2u%).
i=1

Note that

Qu(Q) =EZ, = ﬁ E<eXP<NiXi - %;ﬁ)) =1.

i=1

Hence, Q,, is a probability measure on (€2, F). Moreover, for any Borel set A € B(R"™) we have

Qn((Xy,...,Xp)€ed) = (275”/2/ (Z T — 22 ul>exp<——z a:l>da:1 dx,

- e [ ( Z >dx1 .

In consequence, with respect to Q,, X; — u; are independent N'(0, 1)-random variables. Defining
Sp=X1+ ...+ Xg, we see that with respect to Q,, the random variables

k
(Sk - Z Mz‘)
i=1 ke{l,...n}

are sums of independent standard normal variables, i.e., they have the same distribution as
(Sk)keq1,...n) with respect to IP. In what follows, we show a similar fact in the continuous case,
where Sy is replaced by a Brownian motion, and the sums Zf:l w; are replaced by the inte-
gral ngS ds.
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Assume that T' < oo and H € Hr joc. Then the process M;= fHS dB; is a local martingale and
(M)t:ngSst. Let

t t
Zt::exp(Mt—%<M>t)=eXp (/ Hsst_%/ H?ds)
0 0

Then the process Z = (Zt);cjo,1) is a local martingale. Actually, the following is true.

Lemma 15.3. If M € Mt 1o, then Z = (exp(Mt - %<M>t))t€[O,T] €M7 1oc.
Proof. Applying the It6 formula to the semimartingale Y; = M; — %<M>t, we obtain

t t t
Zt:ZO—i—/stYs—i—%/ st<M)s:ZO+/stMs. 0
0 0 0

Lemma 15.4. Let M € My 10c. a) If M is bounded, then M is a martingale. b) If M is non-
negative, then M is a supermartingale.

Proof. Let 7, /T be the reducing sequence for M. Fix 0<s<t<T and A€ Fs.

a) If M is bounded, then by Lebesgue’s dominated convergence theorem,

E[M,14] =E| lim M;nnA]z lim E[M{"14] = lim E[M/"1,] =E[M,14],

n—00 n—oo n—00

hence M, =IE(M;|F;s) and M is a martingale.

b) If M is non-negative, then

E[MSJIA} = lim E[MSIIAQ{T”>S}]= lim ]E[M;nﬂAm{T">s}]

n— 00 n— o0

= lim E[M]"Lan(r,>e)] >E| lim MZ"ILAQ{THN}}:]E[MQIA],

n—oo n—oo

where we used Lebesgue’s monotone convergence theorem, the fact that M7 is a martingale,
AN{r,>s} e F, and Fatou’s lemma. Hence, M > E(M|F). O

Lemma 15.5. Let M € Mt 1oc. The process

Z = (exp(M¢— (M )+/2))tepo,1)

18 a martingale if and only if EZp=1.

Proof. If Z is a martingale, then EZr=EZy=1. It remains to prove that if EZ;r=1, then Z is
a martingale. Since Z is a non-negative local martingale, by Lemma 15.4, it is a supermartingale.
Thus, for all 0 < s <t < T we have Z; > E(Z|Fs) a.s. Consequently, 1=EZ,>EZ,>EZr=1 and
EZ;=1. As a result,

E(Z; — B(Zr|Ft)) =EZ; — EZp =0,

and thus Z; =E(Zr|F;) almost surely. O
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Proposition 15.6. Let (X;);>0 be a continuous process such that Xo=0 a.s. and for all \e R

U e (ei,\xt+§/\2t>

t>0
18 a complex martingale. Then X ts a Brownian motion.
Proof. The martingale relation

. 1 . 1
B( R ) = B F) = U2 =P

implies that, for every A € R,
1
.7'—8) = eig)g(tis).

E(ei)\(thXs)

Taking the expectation of both sides of the above equality we obtain that the increment X; — X,
is N(0,¢ — s). Moreover, by Lemma 15.7 the above equality implies that X; — X; is independent
of Fs. Therefore, all conditions of Def. 3.1 are satisfied. O

Lemma 15.7. Let G C F be a sub-c-algebra and X a random variable such that for every A€ R
E[e*X| Gl =E[*X] a.s.
Then X is independent of G.

Proof. We have to prove that every G-measurable real random variable Y is independent of X.
The characteristic function of the pair (X,Y) computed at = (A, p) is equal to

E[ei)\XeiuY] — E[E(ei/\X ‘g)ei,uY] — ]E[eiAX]IE[ei“Y}.

This implies the claim. ]

Theorem 15.8. (Girsanov) Let 0 <T < oo and H € Hr 1oc, that is, H is predictable and
fOTHfds <00 a.s. Define a stochastic process Z = (Z)icio,1) by

t t
Zt:exp</ HSdBS—%/ Hfds).
0 0

If EZr=1, that is, Z is a martingale, then the process

B t
B= (Bt/ Hsds)
0 t€[0,T]

is a Brownian motion in the modified probability space (2, F, Qr), where the measure Qr is
defined by Qr(A)=E(1aZr) for A€ F.

Proof. The random variable Z7 is non-negative and IEZ7=1. Thus, Q7 is a probability measure.
Note also that if P(A) =0, then Q7(A)=0. Hence, events that occur P-almost surely also occur
Qr-almost surely. The process B is continuous, adapted to Fi, and By=0. By Proposition 15.6
it is therefore sufficient to show that for all A € R, the process

Uexp<iABt+1/\2t)
2 t€[0,T)
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is a martingale with respect to Q7. Note that

_ t t
UZ; = exp <i)\Bt—|—%/\2t>exp </ Hsst—%/ Hfds)
0 0

t t
exp(i)\Bt—l—/Hsst—%/ (ZiAHs_,\2+Hf)ds>
0 0

— exp </Ot(i)\+HS) dB, —%At(i)\—s—Hs)?ds) —exp (Nt —%(N}t)

where N = [ (iA\+ Hy) dBs € M7 1oc. Thus, the process UZ is a local martingale with respect to
IP. Hence, there exist stopping times 7, /T such that U™Z"™ is a martingale. For every n € N
and every bounded stopping time 7 we have

Eq Uy = E({UZr)=EUE(Zr|F)) =EUoZo) = E(Ur,ArZr,Ar)

n

= ]E(UTn/\TE(ZT|]:Tn/\T)) = ]E<U7'n/\TZT) = IEQTUTH/\T)

where we used Remark 9.3 and the fact that Z and U™ Z7™ are martingales. By Remark 9.3 we
conclude that U™ is a martingale with respect to Q. This implies that U is a Qp-local martingale.
Since U is bounded by Lemma 15.4 it is a martingale. O

Theorem 15.9. Let H € Hr 1oc. Define M = (My)icpo,1) and Z = (Zi)ie(o,1) by

¢
Mt:/ H,dB,, Zt:eXp<Mt_%<Mt>t>a tel0,T].
0

The process Z is a martingale if any of the following conditions is satisfied:
1 1,7
(i). IE(e5<M>T) :]E(eijo ‘HsPdS) <400 (the Novikov criterion).

(it). M is a martingale, supseo,rE(M7) < oo and E(eEMT) <400 (the Kazamaki criterion).

(#3). There exists >0 such that supte[oyT]E(e“‘Htlz) < 00.
Proof. See Theorem 12.2 and Corollary 12.1 in [Ball7]. O

Example 15.10. Let X = (X¢);¢[0,7] be a Brownian motion, A € R and

t AQ t
Zy=exp /\/ XSdXs——/ X2ds .
0 2 0

Using the fact that X, is N'(0,¢) it is easy to see that E(e*7) = (1 —2at)~"/? for all a < % Hence,

H/\2X1,2 _ 1 < 1
B ) =1 ST

and Theorem 15.9 (iii) applied with p € (O,TZT) implies that Z is a martingale. We can therefore

consider on F the probability Qr with density Z7 with respect to IP. The Girsanov theorem states
that

t
Bt:thA/ XSdS
0

46



is a Brownian motion in the probability space (€2, F,Qr). Thus, under Q7 the process (X);cjo, 1)
solves the following SDE

dX;=AX:dt+dB;.

For A <0 the solution of the above equation is known as Ornstein-Uhlenbeck process.

16 Martingale representation theorem

Let B be a Brownian motion adapted to a filtration (Fi)¢>0 and such that (Bsii — Bi)s>o is
independent of F; for all £ > 0. We have seen that the stochastic integral of H € Hp with respect
to B is a square integrable martingale. In this section, we prove that the converse is also true for
a particular choice of the filtration.

Theorem 16.1. Let B be a Brownian motion and (Fi)¢>o be the natural filtration of B augmented
with the events of probability zero, which was introduced in Remark 8.2. Then every square
integrable random variable Z measurable with respect to Fr for some T >0 is of the form

T
Z:C+/ Hsst;
0

where c € R and H € Hy. Moreover, the above representation is unique.

Proof. The uniqueness is obvious, as ¢ is determined by ¢ =IE[Z] whereas, if H") and H®) were
two processes in Hr satisfying (16.1), then from the relation

T
/ (H — HP)dB,=0
0
we have immediately, by the isometry property of the stochastic integral, that
T
IE[/ | — HP2ds | =0
0

and therefore Hgl) :H§2) for almost every s € [0,T] a.s. For the proof of the existence see The-
orem 12.4 in [Ball7]. |

Theorem 16.2. Let B and (F;):»0 be as in Theorem 16.1 and (My)ico, 1) be a square integrable
martingale adapted to (Fi)i>o0. Then there exist a unique process H € Hr and a constant c€ R
such that

t
Mt:c+/H5st a.s.
0

for allt€10,T]. In particular, (M¢)¢ejo,m) admits a continuous modification, that is there exists

a continuous process (Mt)te[O,T] such that My = M, a.s. for each t€0,T).
Proof. As My is square integrable, by Theorem 16.1 there exists a unique process H € Hr such that

T
MT:ch/ H;dB,
0
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and therefore

t
Mt:]E(MT|]-'t):c+/HSdBS a.s.,
0

which finishes the proof. O

17 PDE problems and diffusion processes

In this section, we discuss representations of solutions of elliptic and parabolic PDEs as expecta-
tions of functionals of diffusion processes.

Example 17.1. Suppose that u solves the heat equation

Ou
5 Au on Rz x R4
w0, )= f on R

Let B=(B',..., B% be a vector of independent Brownian motions. The probability density of B;

| ]?

coincides with = +— Wexp(—y) Thus, the probability density of v/2B; coincides with the
s
CXp( ‘Zr) and

fundamental solution of the heat equation y+— K(t,y)= TEnYTE
e

u(t,z) = Rdf(er y) K(t,y)dy=E(f(z++2B:)) =E.(f(V2By)).

We would like to find a relation between PDEs and stochastic processes solving a multidimensional
stochastic differential equation

dX{=b{(Xy)dt+ > o¥(X)dB],  i€fl,...,m},

j=1

with continuous b: R —R? and o: R?—R**™. We assume these functions do not depend on time.
Using the matrix notation we write equivalently

Notation 17.2. Given a solution X< to (17.1) with a deterministic initial condition x € R® we
write E(f(X)):=E(f(X?)).

Definition 17.3. The generator of the diffusion govern by (17.1) is the differential operator

1 d . d ;
L= 5121 a¥ 6103» + ; blai7

— T is atd =S gikgik
where a= 00", that is a” =3,  oc"o’".
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Example 17.4. Let m=d, b=0 and o = /21, where 1 is the identity matrix of size d. Then
L=A is the Laplacian and X =+/2B.

Proposition 17.5. Let # € R? and X = (X',..., X%) be a solution to (17.1). Then for every
function u:Rs x R?—= R that is C! in Rs and C? in RY, the process

t<@+Lu>(s,Xs) ds

tHMﬁzu(t,Xt)—u(O,XO)—/ 35

0

18 a continuous local martingale.

Proof. The result follows by a standard application of the Ité formula. O

Definition 17.6. (Uniformly elliptic) Given a domain U C R? we say that a: U — R¥*9 is
uniformly elliptic if there is a constant ¢ >0 such that for all ¢ € R? and x € U, we have

la(z)€ > cl¢f,

where U denotes the closure.

Remark 17.7. Equivalently, the smallest eigenvalue of a is bounded away from 0.

In what follows, we assume that b: R? — R?% and o: R?— R¥*™ are globally Lipschitz such that
a=o0" is uniformly elliptic. Note that since b, ¢ do not depend on time, they also satisfy the
sublinear growth condition from Assumption 14.6. Consequently, the SDE (17.1) has a unique

solution.

17.1 Dirichlet—Poisson problem

We first study the Dirichlet-Poisson problem. Let U CR? be a domain, f € C,(U) and g € Cy(9U).
We want to find u € C2(U)NC(U) such that

—Lu= f on U,
u= g on OJU.

If f=0, this is called the Dirichlet problem and if g=0, this is called the Poisson problem.

It is possible to prove existence of a solution to the Dirichlet-Poisson using the diffusion process
govern by (17.1). However, we shall prove a slightly weaker result. Assuming that we have a solution
of the PDE we will show that it is represented by a certain formula involving the diffusion process.
We first note the following theorem without proof.

Theorem 17.8. Let U be a non-empty, connected, bounded, open subset of R® with a smooth
boundary. Then for every Hélder continuous f:U — R and continuous g: OU — R, the Dirichlet-
Poisson process has a solution u€ C*U)NC(U).

We now state the main theorem of this section.
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Theorem 17.9. Let U, f and g be as in the previous theorem, u€ C?(U)NC(U) be a solution to
the Dirichlet-Poisson problem and X be a solution to (17.1). Define the stopping time

Tu=inf{t>0| X, ¢U}.

Then E1y < oo and

ul(z) = &(g(xm) + [ ds)

Proof. Proposition 17.5 applies to functions defined on all of R™, while u is just defined on U. To
circumvent this problem, we define

Un:{yeU

dist(y,@U)>%}, T =inf{t >0|X: ¢ U,},

and pick u, € CZ(R%) such that u|y, =u,|y,. Recalling our previous notation, let
tATh

MP = (M) =un(Xiar,) — un(Xo) — / Lun(Xs)ds.
0

The process M is a bounded continuous local martingale. Hence, it is a true martingale. For
z €U and n large enough, the martingale property implies

tATH tATn

u(x)zun(x):E<u(XtAm)_ /O Lu(Xs)ds>:]E<u(Xt/\m)+ /0 f(Xs)ds>.

To complete the proof, it remains to demonstrate that the limit n— oo can be taken on both sides
of the identity above.

We first show that E1y < co. Note that [E7y depends only on the process X and does not involve f
or g. So we can take f=1 and ¢=0, and let v be a solution of the corresponding Dirichlet—Poisson

problem. Then we have
tATh
E(tAT,) = ]E(/ Lv(Xs) ds) =v(z) —E(v(Xirr,)) < 2||v||L.
0

Since t AT, /Ty a.s. as n— 0o and t— oo, by monotone convergence theorem we obtain
E(ry) = lim lim E(tA7,) <2|jv||pe < co.
t—o00 n—oo

Using

IE( JAETRCIEs) ds) <[l E(ry) < oo,

by the dominated convergence theorem, we conclude that

tATR [e'e] TU
lim lim E(/ f(Xs) ds): lim lim IE(/ Lo, en7,(8) f(XS) ds):E(/ f(Xs) ds).
t— oon— 00 0 t—oon— oo 0 0

Since u is continuous on U, we also have

lim lim E(u(Xirr,)) =E(u(X,)) =E(9(X-,)).

t—oon—oo
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This finishes the proof. O

17.2 Cauchy problem for parabolic equations

We can also use SDEs to solve the Cauchy problem for parabolic equations. For f € CZ(R?), we
want to find u: R> x R?— R that is C! in Rs and C? in R? such that

ou
ot
U(O, :

= Lu on Ry x R4
= f on R4

~—

Theorem 17.10. For every f € CZ2(R?), there exists a solution ue Cp*(Rs x RY) to the Cauchy
problem.

Theorem 17.11. Let f € CZ(RY) and v e C*(Rs x R?) be a solution to the Cauchy problem
and X be a solution to (17.1). Then for 0 < s<t we have

E.(f(Xe)| Fs) =u(t — s, Xy).

In particular,

u(t, x) = Eq(f(X4)).
Proof. Let g(s,z)=wu(t —s,z). Then

9g _ 9 s )=
(a—l—Lg)(s,x)— Btu(t s,x)+ Lu(t —s,z)=0.

Hence, by Proposition 17.5, g(s, X;) is a bounded martingale, and
u(t —s,Xs) = g(s, Xo) =BE(g(t, X¢)| Fs) = E(u(0, Xo)| F5) = E(f(Xe)| F5),

which proves the desired identity. O

The following generalization of the identity from the previous theorem is known as the Feynman-—
Kac formula.

Theorem 17.12. (Feynman—Kac formula) Let f € CZ(R?) and V € Cy(RY) and suppose that
ue CP*(Rs x RY) satisfies

%:LquVu on Ry xRY,
u(0,)=f on RY,

where (Vu)(t,z) =V (x)u(t,z) for allt >0 and x € R Then for all t >0 and v € R? we have

u(t, ) :IEx<f(Xt) exp (/OtV(X,) dr)),

where X is the solution to (17.1).
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Proof. Let Z,=exp( [, V(X,)dr). For s €0,], set
My=u(t—s,Xs)Zs= f(s, Xs, Zs), fls,z, 2)=u(t —s,x)z.

Let us show that M is a martingale on [0,¢]. Indeed, by the It6 formula we have

d
_of of i, Of
dM, = E(s,XS,ZS) ds+i§:1: W(S,Xs, Zs)dXs+aZ(s,Xs, Zs)dZs
d
+§7, ]:1 8xlax](S7XS7ZS)a (XS) ds.

Since dZ, =V (X;)Zsds and dyu = Lu + Vu we arrive at
dM; = (—0w+ Lu)(t —s,X;) Zsds
H(Vu)(t — s, Xs) Zs o(Xs) dB,
+u(t — s, Xs)V(Xs) Zsds
= (Vu)(t—s,X;)Zs0(X;) dBs.

This proves that M is a local martingale. Since v and V' are bounded, M is also bounded. Con-
sequently, M is a martingale and

U(t, x) = MO = ]EMt = IE['LL(O, Xt)Zt] = ]E[f(Xt)Zt],

which finishes the proof. a

18 Markov property

Definition 18.1. Let B(IRY) be the Banach space of bounded Borel functions equipped with the
norm ||f|| =supyera |f(z)]. A collection of bounded linear operators (Q:)i>0 on B(RY) is a
transition semigroup if:

(i). Qif >0 a.e. if {20 ae.,
(ii). Qi1 =1 where 1(x)=1 for all z € RY,
(ii1). | Q[ <1,
(). Qirs=Q: Qs for all t,s >0 (semigroup property).

We say that a process X = (Xi)i>0 adapted to a filtration (Fi)i>o is a Markov process with

transition a semigroup (Q¢)i>0 if

E(f<Xs+t)‘~7:s) = (Qtf)(Xs) (18~1)

for all s,t >0 and f € B(RY).

Remark 18.2. The probability that the Markov process X starting at = € R? at time ¢ > 0 belongs
to a Borel set A coincides with P, (X; € A) =E,(14(X:)) = (Q¢1a)(x).
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Theorem 18.3. Let B be a Brownian motion and (Fi)t>o be the natural filtration of B augmented
with the events of probability zero. Assume that b: R* — R? and o: R* — R*¥*™ are Lipschitz
continuous functions and X = X* is a solution to

with the initial condition Xo=x € R%. Then X is a Markov process with the semigroup

(Quf) (@) = Eo f(X).

Lemma 18.4. Under the assumptions of Theorem 18.3 there ezxists a map S:R> xR xQ—R
such that:

(i). for every t € Rx and z € R? we have X{(w)=S(t,z,w) for almost all w €,
(#1). the map (t,z)— S(t,z,w) is continuous for almost all w €,
(iii). for every t € Rs and x € R? the map w— S(t,z,w) is Fi-measurable.

In particular, for all t >0 the map (x,w)— S(t,z,w) is measurable with respect to the o-algebra
B(RY) @ F; and the solution X of (18.2) with random initial condition Xo='Y satisfies for all
t >0 the idenity X¢(w)=S(t,Y (w),w) for almost all w €.

Proof. See Sec. 9.8 of [Ball7]. O

Proof of Theorem 18.3. It is easy to check that (Q:):>¢ satisfies the conditions (i)-(iii). The
condition (iv) follows from (18.1) and the definition of @, since

(Qirsf) (@) =Eof(Xtys) = Ee(Ba(f(Xe1s)|Fs)) = Ea((Qef)(Xs)) = (QsQ1f ) ()

for all z € R%. Thus, it remains to prove (18.1). We have

XS:X0+/ b(Xy) du+/ o(X,)dB,
0 0
and
t+s t+s
Xt+s=X0+/ b(Xu) du+/ o(Xy) dBy.
0 0

Set Xt = Xt+s, .7:",5 =Fits, and Bt = Byys— Bs. Then B is a Brownian motion adapted to (ﬁt)t>o
and we have

t

~ ~ t ~ ~ ~
X, = Xo+ / b(X,) du+ / (%) d By,
0 0

Indeed, this follows from f;+sa(Xu) dB,= fga(f(u) dB,, which can be seen by approximating both
sides by sums. Thus X solves (18.2) with Xo= X, and B=B.
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Define F:R?x Q— R by F(z,w)= f(S(t,x,w)), where S is the solution map from Lemma 18.4. Let
G =Fo=F, and H be the o-algebra generated by BuE[O,t] = (Buy— Bs)ue[s,s+1 augmented with zero
probability events. Then G and H are independent, X=X, is G-measurable and F is B(R™) @ H-
measurable. Hence, the assumptions of the freezing lemma stated below are satisfied and we obtain

E(F(Xo,)|G) = G(Xo),
where the function G: R? — R satisfies the equation
G(z)=E(f(F(z,)=Ef(S(t,z,") = (Qf)(x)
for all z € R% Since we have X;(w)=S(t, Xo(w),w) for almost all w € Q we conclude that
E(f(Xs10)|Fs) = E(f(X0)|Fo) = E(F(Xo,-)|G) = G(Xo) = (Quf) (2)-

This shows (18.1) and completes the proof. a

Lemma 18.5. (Freezing lemma) Let (2, F, P) be a probability space and G and H be inde-
pendent sub-c-algebras of F. Suppose that X is a G-measurable random variable taking values
in RY and F:RYx Q— R is a B(RY) ® H-measurable function such that the random variable
wr— F(X(w),w), denoted by F(X,-), is integrable. Then, we have

E(F(X,-)|9)=G(X), (18.3)

where the function G:R?— R is defined by G(x):=E(F(z,-)) for all x € R%.

Proof. Let us assume first that F is of the form F(z,w)= f(2)Z(w), where Z is H-measurable.
In this case, G(z) = f(x)EZ and

E(F(X,-)[9)=E(f(X)Z|9) = f(X)E(Z|9) = f(X)EZ = G(X).

Therefore, the statement is true for linear combinations of F' of the form described. One obtains
the general case with the help of Theorem 1.5 from [Ball7]. O

When modeling systems with Markov processes, we are often interested in their long-term behavior.
In particular, we seek to understand whether the system stabilizes and where it spends most of its
time. This is where invariant measures come into play. They capture the statistical equilibrium of
a Markov process — a distribution that remains unchanged as the process evolves.

Definition 18.6. Let X be a random variable in R®. The probability measure
BRY>A—P(XeA)e(0,1]

is called the law of X and denoted by Law(X).

Definition 18.7. Let (X;):>0 be a Markov process. We say that a measure p is invariant for X
if the condition Law(Xg) = p implies Law(X;) = p for all t > 0.
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Remark 18.8. Let (Q¢):>0 be the transition semigroup of (X;);>o. A measure p is invariant iff

[ 1@ ntan) = [ (@)@ utaa)

for all t >0 and f € B(RY).

Example 18.9. Let A >0 and B be a Brownian motion. Consider the Ornstein-Uhlenbeck process
dX;=-\X;dt+dB;

for all ¢ > 0. We know that the solution is given by

t
X, = Xo e*mr/ e Mt=9)dB,.
0

Let X be A(0,1/(2))) and independent of B. Then, X; has Gaussian distribution with vanishing
expectation and variance

6—2)\t 1— 6—2)\t 1
Var(X;) = N + R

Therefore, X; is N'(0,1/(2))). Thus, the measure

— A —A\zx?
w(dx) = \/;e dx

is invariant for X.
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