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Abstract

We present a construction of the Gibbs measure of the fractional Φ4 model of

Euclidean quantum field theory in three-dimensions. The measure is obtained as a per-

turbation of the Gaussian measure with covariance given by the inverse of a fractional

Laplacian. Since the Gaussian measure is supported in the space of Schwartz distribu-

tions and the quartic interaction potential of the model involves pointwise products, to

construct the measure it is necessary to solve the so-called renormalization problem. To

this end, we study the stochastic quantization equation, which is a nonlinear parabolic

PDE driven by the white noise. We prove a certain a priori estimate for solutions of

this equation using the flow equation approach to singular stochastic PDEs and the

maximum principle. We consider the entire range of powers of the fractional Laplacian

for which the model is subcritical (i.e. super-renormalizable).
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1 Introduction

We outline the construction of the fractional Φ4 model of Euclidean quantum field theory

given in [DGR23]. We first define the model on a finite lattice and subsequently study the

continuum and infinite volume limits. Let Td
ε,τ be the d-dimensional toroidal lattice with

spacings ε ∈ A := {2−n |n ∈ N0} and length τ ∈ N+. Define the probability measure νε,τ
on field configurations {ϕ : Td

ε,τ → R} by

νε,τ (dϕ) := Z−1
ε,τ exp(−Sε,τ (ϕ))

∏
x∈Td

ε,τ

dϕ(x),

where Zε,τ is the normalization constant,

Sε,τ (ϕ) := εd
∑

x∈Td
ε,τ

(
ϕ(x)((−∆ε)

σ/2ϕ)(x) + ϕ(x)2 +
1

2
ϕ(x)4 − rε,τ ϕ(x)

2

)

is called we action, (−∆ε)
σ/2 is the fractional discrete Laplacian of order σ ∈ (0,∞) and

rε,τ ∈ R is the mass counterterm. In order to make sense of the continuum and infinite

volume limit we have to identify the measure νε,τ on {ϕ : Td
ε,τ → R} with a measure on

S ′(Rd). To this end, we extend ϕ : Td
ε,τ → R to Rd using the following extension map

(Eεϕ)(x) :=
∑
y∈Rd

ε

χ((x− y)/ε)ϕ(y), x ∈ Rd.

Here and in what follows, we identify a function ϕ : Td
ε,τ → R with a periodic function

ϕ : Rd
ε → R, where Rd

ε is an infinite d-dimensional lattice with spacings ε ∈ A. The radially

symmetric function χ ∈ S (Rd) appearing in the above formula is chosen in such a way
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that Fχ is non-negative, Fχ = 1 on a ball in Rd of radius π/2 centered at the origin and∑
n∈Zd Fχ(• + 2πn) = 1, where F denotes the Fourier transform in Rd defined by

(Fχ)(p) :=
1

(2π)d

∫
Rd

χ(x) exp(ip · x) dx, p ∈ Rd.

One shows that Eε is indeed an extension map, that is, Eεϕ(x) = ϕ(x) for all x ∈ Rd
ε .

Moreover, we also have Eεϕ ∈ C∞
b (Rd) ⊂ S ′(Rd) for all ϕ : Td

ε,τ → R. We define the

measure ν̂ε,τ on S ′(Rd) as the pushforward of νε,τ by Eε. We are interested in the limit

ε→ 0, τ → ∞ of ν̂ε,τ .

It turns out that the proof of existence of the continuum limit gets more complicated as

the order of the fractional Laplacian σ decreases. In order to build some intuitions about

this limit let us for a moment assume that the length of the torus τ ∈ N+ is fixed. If

σ ∈ (d,∞), then the measure obtained in the continuum limit has the following form

ν̂τ (dϕ) = Z−1 exp(−V (ϕ)) µ̂τ (dϕ),

where

V (ϕ) =
1

2

∫
Td
τ

ϕ(x)4 dx

is the interaction potential, Td
τ is the torus of length τ and µ̂τ is the Gaussian measure

on S ′(Td
τ ) with covariance ((−∆)σ/2 + 1)−1/2. In order to prove that the measure ν̂τ is

well defined one uses crucially the fact that the Gaussian measure µ̂τ is concentrated in the

space of continuous functions and consequently powers of the field ϕ distributed according

to this measure are well-defined. This is not the case if σ ≤ d as then the field ϕ distributed

according to µ̂τ is a genuine distribution. In order to make sense of the potential one has

to renormalize it by subtracting appropriate mass counterterm. If σ ∈ (3d/4, d], then the

so-called Wick renormalization is sufficient. In this regime the interacting measure still has

an explicit density with respect to the Gaussian measure

ν̂τ (dϕ) = Z−1 exp(− :V (ϕ):) µ̂τ (dϕ),

where :V (ϕ): denotes the so-called Wick renormalization formally defined by

:V (ϕ): :=
1

2

∫
Td
τ

ϕ(x)4 dx− 3µ̂τ (ϕ
2)

∫
Td
τ

ϕ(x)2 dx+
3

2
µ̂τ (ϕ

2), µ̂τ (ϕ
2) ≡ µ̂τ (ϕ(x)

2) = ∞.

If σ ≤ 3d/4, then some further renormalization beyond Wick renormalization is necessary.

The renormalization problem is tractable if σ > d/2. In this regime the fractional Φ4

model is scaling subcritical. That is, after a scale transformation with a scale factor δ the

interaction term in the potential acquires a prefactor proportional to a positive power of δ.

This suggests that the short distance behavior of a model should be governed by the free

theory. If σ ≤ d/2, then it is expected and in some cases known [ADC21] that the continuum
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limit does not exist or is Gaussian. In what follows, we study the subcritical regime beyond

Wick renormalization. More specifically, we assume that σ < 2, that is the fractional Φ4
3

model is more singular than the standard Φ4
3 model. The main result of these notes is the

following theorem.

Theorem 1.1. Suppose that d = 3 and σ ∈ (3/2, 2). There exists a choice of the mass

counterterm (rε,τ )ε∈A,τ∈N+
such that:

(A) ν̂ := limn→∞ ν̂εn,τn exists in the sense of weak convergence of measures on S ′(Rd) for

some sequences (εn)n∈N+
, (τn)n∈N+

such that limn→∞ εn = 0, limn→∞ τn = ∞,

(B) ν̂ is invariant under translations and reflection positive,

(C) ν̂ has sub-Gaussian tails.

Remark 1.2. The limit in Item (A) of the above theorem exists only if rε,τ diverges at a par-

ticular rate as ε↘ 0. It is expected that ν̂ is invariant under all Euclidean transformations

of Rd. Item (C) implies that ν̂ is non-Gaussian.

1.1 Strategy of the proof

In order to establish Item (A) of Theorem 1.1 it suffices to prove the following bound

sup
ε∈A,τ∈N+

∫
∥ϕ∥Bε

νε,τ (dϕ) <∞, (1.1)

where ∥•∥Bε is some weighted Hölder-Besov norm on Rd
ε of negative regularity. Let ∥•∥B be

an analogous weighted Hölder-Besov norm on Rd. By the uniform boundedness of the family

of the extension maps (Eε : Bε → B)ε∈A, proved in [MP19, Lemma 2.24], we conclude

that

sup
ε∈A,τ∈N+

∫
∥Eεϕ∥B νε,τ (dϕ) <∞.

The above bound implies tightness of the family of measures (ν̂ε,τ )ε∈A,τ∈N+
on B̃, where B̃

is any weighted Hölder-Besov norm on Rd of negative regularity such that B is compactly

embedded in B̃. In consequence, Item (A) follows from the Prokhorov theorem.

In order to prove the bound (1.1) we use the parabolic stochastic quantization technique.

We view νε,τ as an invariant measure of a certain parabolic stochastic PDE called the

stochastic quantization equation. The stochastic quantization equation becomes singular,

that is classically ill-posed, in the continuum limit ε↘ 0. To address this problem, we use the

approach to singular stochastic PDEs based on the renormalization group flow equation. We

rewrite stochastic quantization equation as a certain system of equations that involves the

so-called effective force and remains well-posed in the continuum limit provided the effective

force is chosen appropriately. We derive a coercive estimate for the above-mentioned system

of equations using the maximum principle. The proof of the coercive estimate relies on the
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estimates for the effective force that hold only for suitable choices of the counterterms and

are proved by induction using the flow equation for cumulants of the kernels of the effective

force functional.

The proof of Item (B) of Theorem 1.1 is completely standard and is already contained

in [GH21]. To prove Item (C) we use the trick introduced in [HS22]. In what follows, we

outline the proof of Item (A). We stress that d = 3 and σ ∈ (3/2, 2) are fixed.

Remark 1.3. The technique of the proof can be adapted with considerable simplifications to

the case σ = 2. The method does not work for σ > 2 because in this regime the operator

(−∆ε)
σ/2 does not satisfy the maximum principle. However, let us mention that for σ > 2

Theorem 1.1 (except the reflection positivity of ν̂, which is not expected to hold if σ > 2)

can be quite easily proved using the (iterated) Da Prato-Debussche trick and the energy

method.

1.2 Difficulties to overcome

• We study full subcritical regime and need a systematic procedure to prove the so-called

stochastic estimates.

• In contrast to the standard heat kernel that is smooth outside origin and decays

exponentially at infinity, the fractional heat kernel is not smooth at the entire time-

zero hypersurface and decays only polynomially at infinite. The above-mentioned

properties of the fractional heat kernel lead to many technical issues. Let us mention

that problems of a similar type would also appear in the elliptic stochastic quantization

approach. The difficulties related to badly behaved kernels could potentially be avoided

in the approach developed in [DFG22,GM24].

• It is not sufficient to establish a bound for the parabolic spacetime Besov norm of the

solution of the stochastic quantization equation. We need to prove a bound for the

Besov norm in space for the solution evaluated at a fixed time. To this end, we have

to pay close attention to the regularity in time of various objects.

1.3 Literature

The construction of the fractional Φ4 model presented in these lecture notes was developed

in [DGR23]. The approach to singular SPDEs based on the flow equation was originally

proposed in [Duc22,Duc21] and was inspired by the renormalization group [Wil71] approach

to singular SPDEs [Kup16]. For a pedagogical introduction to the flow equation approach

to singular SPDEs we refer the reader to the lecture notes [Duc23]. The fractional Φ4 model

was previously studied in [Abd07,BMS03], where the trajectory connecting the Gaussian and

non-Gaussian fixed points of the renormalization group transformation was constructed in

this model for σ > d/2 sufficiently close to the critical value d/2. A very general local in time
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solution theory for singular SPDEs on compact spatial domains in full subcritical regime

was developed in [Hai14, CH16, BHZ19, BCCH21, HS23], see also [OSSW21, LOTT21]. In

order to prove global in time existence or establish well-posedness on a non-compact spatial

domain one has to take into account some specific properties of the equation. In particular,

in the case of the stochastic quantization equations of the Φ4 models the coercive cubic

term plays a crucial role in the proof of existence of global solutions. The case of the

standard Laplacian corresponding to σ = 2 is by now well understood and useful a priori

estimates were establish in [MW17,GH19,MW20,GH21] using the energy method or the

maximum principle. Let us also mention the work [CMW23], where an a priori estimate for a

singular SPDE with the standard Laplacian and a cubic non-linearity was established in full-

subcritical regime by adjusting the regularity of the noise term. Note that such an equation

with a colored noise does not arise naturally in the context of stochastic quantization of

Euclidean QFTs. Establishing a priori bounds for singular SPDEs without a damping term

is significantly more challenging. See [HR23,BC24,CLFW24,SZZ24] for recent results about

such equations.

1.4 Organization of the notes

In Sec. 2 we briefly introduce the parabolic stochastic quantization method. Next, in Sec. 3

we give an overview of the flow equation approach to singular SPDEs. The main technical

result of these notes, the proof of a deterministic a priori estimate for the stationary solution

of the stochastic quantization equation, is contained Sec. 4. In Sec. 5 we outline the proof

of the so-called stochastic estimates for the enhanced noise. Note that to conclude the

bound (1.1) implying tightness of the sequence of measures one has to combine the a priori

estimate for the solution with the stochastic estimates for the enhanced noise.

2 Parabolic stochastic quantization

Definition 2.1. Let A := {2−n |n ∈ N0}. We denote by Rd
ε the infinite d-dimensional

lattice with spacings ε ∈ A and by Td
ε,τ the d-dimensional toroidal lattice with spacings

ε ∈ A and period τ ∈ N+. We define Λ0 := R× Rd, Λε := R× R3
ε and Λε,τ := R× T3

ε,τ .

The basic idea behind the stochastic quantization is to view a probability measure of

interest νε,τ as the law of a measurable function Fε,τ of a certain Gaussian random variable

ξε,τ , that is νε,τ = Law(Fε,τ (ξε,τ ). In the parabolic stochastic quantization approach one

chooses the Gaussian random variable to be the space-time white noise ξε,τ ∈ S ′(R×Td
ε,τ ),

which is defined uniquely by the conditions

E(ξε,τ (φ)) = 0, E(ξε,τ (φ)ξε,τ (ψ)) = εd
∑
x∈Rd

ε

∑
n∈Z2

∫
R
φ(t, x)ψ(t, x+ τn) dt,
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that is, the covariance of ξε,τ is the periodization in space of the Dirac delta. In order to

define the map Fε,τ one studies the following parabolic PDE(
∂t + (−∆ε)

σ/2 + 1
)
Φε,τ = ξε,τ − Φ3

ε,τ + rε,τ Φε,τ (2.1)

posed on Λε,τ = R×T3
ε,τ , which is called the stochastic quantization equation of the fractional

Φ4
3 model or the dynamical fractional Φ4

3 model. Since T3
ε,τ is a finite set, the above equation

is actually a finite-dimensional stochastic differential equation in a gradient form. It is easy

to prove that for every ε ∈ A and τ ∈ N+ the above SDE has a global stationary solution

Φε,τ ∈ C(Λε,τ ) and νε,τ = Law(Φε,τ (t, •)) for all t ∈ R. Then the bound (1.1), which we

want to prove, is equivalent to the bound

sup
ε∈A,τ∈N+

E∥Φε,τ (t, •)∥Bε
<∞ (2.2)

for any t ∈ R. We can hope to be able to use PDE tools to prove the above bound.

The difficulty is related to the fact that Eq. (2.1) becomes singular in the continuum limit

ε ↘ 0. Indeed, in the continuum limit in the parabolic Hölder-Besov scale the white noise

noise has regularity −dim(ξ)− κ for all κ ∈ (0,∞), where dim(ξ) is introduced in Def. 2.2

below. Taking into account the regularizing effect of the inverse of the parabolic differential

operator that appears in Eq. (2.1) we expect that in the continuum limit the solution Φε,τ

has regularity − dim(Φ)−κ. In particular, the expected regularity of the solution is negative

since d = 3 and σ ∈ (d/3, 2). Hence, in the continuum the cubic term in the equation is not

well-defined and the equation is singular.

Definition 2.2. We define the following constants:

dim(ξ) = (d+ σ)/2, dim(Φ) = (d− σ)/2, dim(λ) = 2σ − d.

Remark 2.3. The condition dim(λ) > 0 is equivalent to the sub-criticality condition.

3 Flow equation approach to singular SPDEs

In this section we introduce main ideas behind the flow equation approach to singular SPDEs.

In order to prove the bound (2.2) uniform in the lattice spacing ε ∈ A we need some control

of the continuum limit ε ↘ 0 of the stochastic quantization equation (2.1). We start by

rewriting Eq. (2.1) in the following compact form

LεΦε,τ = Fε,τ [Φε,τ ], (3.1)

where:

• Lε := (∂t + (−∆ε)
σ/2 + 1),

7



• Fε,τ [φ] := ξε,τ − φ3 + rε,τ φ – force,

• ξε,τ – spacetime white noise,

• rε,τ – mass counterterm.

The above equation is posed on Λε = R × R3
ε and we are interested in solutions that are

periodic in space with period τ ∈ N+. In Sec. 3.2 we show that the stochastic quantization

equation (3.1) can be rewritten as a certain system of equations that remains well-posed in

the continuum limit. The system of equations involves the so-called coarse-grained process

and an effective force, which are introduced in Sec. 3.1. In Sec. 3.3 we present a construction

of a suitable effective force functional and in Sec. 3.4 we state the stochastic estimates for

the kernels of this functional.

3.1 Coarse-grained process and effective force

The basic idea of the approach is to replace the stochastic quantization equation (3.1)

by a certain equivalent equation that is expressed in terms of the so-called coarse-grained

process. Note that in contrast to the solution of stochastic quantization equation, the coarse-

grained process remains smooth in the continuum limit.

Definition 3.1. Let ε ∈ A. We define the fractional Laplacian (−∆ε)
σ/2 as the Fourier

multiplier with the symbol

(−π/ε, π/ε)d ∋ p̄ 7→ (ωε(p̄))
σ :=

(∑d
i=1 sin(εp̄i)

2/ε2
)σ/2

∈ R.

Definition 3.2. Let ε ∈ A and µ ∈ (0, 1]. We fix j ∈ C∞(R) such that j(η) = 1 for

η ∈ [−1/2, 1/2] and j(η) = 0 for η ∈ R \ (−1, 1) and define Jε;µ ∈ C∞(Λε) as the Fourier

transform on Λε of the function

R× (−π/ε, π/ε)d ∋ p ≡ (p̊, p̄) 7→ j(p̊/µσ)j(ωε(p̄)/µ).

Remark 3.3. The function Jε;µ is a smooth approximation of characteristic length scale µ

of the Dirac delta at the origin δ
(0)
Λε

∈ S ′(Λε).

Remark 3.4. To simplify the notation we write ∥•∥ for ∥•∥L∞(Λε). Moreover, we use the

symbol ∗ to denote the convolution on Λε.

Definition 3.5. For non-negative measurable functions f : Λε,τ → R we write∫
Λε

f(z) dz :=
1

ε3

∑
z̄∈R3

ε

∫
R
f (̊z, z̄) dz̊,

where dz̊ is the Lebesgue measure on R. We denote by L1(Λε) the space of functions f as

above such that ∥f∥L1(Λε) :=
∫
Λε

|f(z)|dz <∞.
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Definition 3.6. Let ε ∈ A. The fractional heat kernel Gε ∈ L1(Λε) is defined by the

equation

(∂t + (−∆ε)
σ/2 + 1)Gε = δ

(0)
Λε
,

where δ
(0)
Λε

∈ S ′(Λε) is the Dirac delta at the origin. For µ ∈ (0, 1] we set

Gε;µ := Jε;µ ∗Gε, Ġε;µ := ∂µJε;µ ∗Gε.

Definition 3.7. For a = (̊a, ā) ∈ M := N0 × Nd
0 we define the differential operator ∂aε on

Λε = R× Rd
ε by

∂aε := ∂åt

d∏
i=1

∂āi
ε,i,

where ∂t is the time derivative and ∂ε,i is the right discrete derivative on the lattice Rd
ε in

the i-th direction. We set |a|σ := σå+ a1 + . . .+ ad.

Definition 3.8. The parabolic distance |• |σ compatible with the operator L0 is defined by

|z|σ := (|̊z|2/σ + |z̄|2)1/2 for z = (̊z, z̄) ∈ Λ0 = R× Rd.

Remark 3.9. Note that Λ0 ∋ (̊z, z̄) → |z|2σ ∈ R is continuously differentiable in z̊ and smooth

in z̄. The regularity of the parabolic distance plays a role in the definitions of various weights

introduced below. The fact that

Lemma 3.10. For µ ∈ (0, 1] let w̃µ ∈ C(Λ0) be defined by

w̃µ(z) :=
(
1 + µ−2|z|2σ

)1/2
.

For all spacetime multi-indices a ∈ M and all β ∈ [0, σ) the following bounds

∥w̃β
1 ∂

a
εGε;1∥L1(Λε) ≲ 1, ∥w̃β

µ∂
a
ε Ġε;µ∥L1(Λε) ≲ µσ−1−|a|σ ,

∥Tτ (w̃
β
µ|∂aε Ġε;µ|)∥ ≲ µ−d−1−|a|σ

hold uniformly in ε ∈ A, τ ∈ N+ and µ ∈ (0, 1], where Tτ denotes the periodization in space.

Remark 3.11. If σ ∈ 2N+, then the bounds stated in the above theorem hold for all β ≥ 0.

If σ /∈ 2N+, then the bounds stated in the above theorem are not true for β ≥ σ. The

fact that the fractional heat kernel has only limited polynomial decay causes many technical

problems. The reason behind the slow decay is the fact that for σ /∈ 2N+ the symbol of the

operator Lε is not smooth.

Definition 3.12. Let w ∈ C(Λ0) be a weight defined by w(z) = (1+|z|2σ)−1/6 for all z ∈ Λ0.

For ε ∈ A and τ ∈ N+ we define C♭(Λε,τ ) to be the Fréchet space{
φ ∈ C(Λε,τ ) : ∀n∈N+∥w1/n φ∥ <∞

}
.
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Remark 3.13. Since φ ∈ C(Λε,τ ) is periodic in space, the fact that the weight w decays in

space does not play any role in the above definition. It is easy to show that Ψε,τ ∈ C♭(Λε,τ )

almost surely, where Ψε,τ is the stationary solution of LεΨε,τ = ξε,τ . Note that since the

domain Λε,τ = R × Td
ε,τ is not compact, Ψε,τ /∈ Cb(Λε,τ ) almost surely. One proves that

almost surely ∥wα(Jε;µ ∗ Ψε,τ )∥ ≲ µβ uniformly in ε ∈ A, τ ∈ N+ and µ ∈ (0, 1] for all

α ∈ (0, 1] and β < −dim(Φ), where dim(Φ) is introduced in Def. 2.2. Here we used crucially

the fact that the weight w decays in space as otherwise the estimate would not be uniform

in τ ∈ N+. Let Φε,τ ∈ C(Λε,τ ) be the stationary solution of the stochastic quantization

equation (3.1). By applying the maximum principle to the equation for Φε,τ − Ψε,τ one

shows that Φε,τ ∈ C♭(Λε,τ ) almost surely. We expect that ∥wαΦε,τ ;µ∥ ≲ µβ uniformly in

ε ∈ A, τ ∈ N+ and µ ∈ (0, 1] for all α ∈ (0, 1] and β < −dim(Φ), where Φε,τ ;µ is the

coarse-grained process introduced below.

Definition 3.14. Let ε ∈ A, τ ∈ N+ and Φε,τ ∈ C♭(Λε,τ ) be the stationary solution of the

stochastic quantization equation (3.1). The coarse-grained process at the scale µ ∈ (0, 1] is

defined by the equality

Φε,τ ;µ := Jε;µ ∗ Φε,τ ∈ C♭(Λε,τ ).

Remark 3.15. Informally, the coarse-grained process is obtained by averaging the solution

of the original equations over regions of size µ. The coarse-grained process captures the

behavior of the solution of the original equation at spatial scales larger than µ and is es-

sentially constant at smaller scales. In particular, for all strictly positive scale parameters

µ the coarse grained process is smooth even in the continuum limit. However, since in the

continuum limit the solution of the original equation becomes a distribution the L∞ norm

of the coarse-grained process must blow up in the limit µ↘ 0 as indicated in Remark 3.13.

Definition 3.16. Let ε ∈ A and τ ∈ N+. An effective force is a family of functionals

Fε,τ ;µ : C♭(Λε,τ ) → S ′(Λε,τ ) parameterized by µ ∈ [0, 1] such that:

(1) Fε,τ ;µ=0 = Fε,τ , where Fε,τ is the force,

(2) for all φ ∈ C♭(Λε,τ ) the function [0, 1] ∋ µ→ Fε,τ ;µ[φ] ∈ R is continuous and piecewise

differentiable.

We call ζε,τ ;µ := Fε,τ [Φε,τ ]− Fε,τ ;µ[Φε,τ ;µ] ∈ S ′(Λε,τ ) the remainder, where Φε,τ and Φε,τ ;µ

are as in Def. 3.14.

Remark 3.17. In practical application one has to choose an effective force in such a way that

the remainder vanishes or is small in a sense discussed below.

3.2 System of equations for coarse-grained process and remainder

In this section we show that the stochastic quantization equation (3.1) can be rewritten as a

certain system of equations for the coarse-grained process and the remainder. To this end,
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observe that Eq. (3.1) and Def. 3.14, 3.16 imply that the coarse-grained process satisfies the

following equation

LεΦε,τ ;µ = Jε;µ ∗ Fε,τ [Φε,τ ] = Jε;µ ∗ (Fε,τ ;µ[Φε,τ ;µ] + ζε,τ ;µ).

Consequently,

∂µΦε,τ ;µ = Ġε;µ ∗ (Fε,τ ;µ[Φε,τ ;µ] + ζε,τ ;µ). (3.2)

Moreover,

∂µζε,τ ;µ = ∂µ(Fε,τ [Φε,τ ]− Fε,τ ;µ[Φε,τ ;µ]) = −∂µFε,τ ;µ[Φε,τ ;µ]. (3.3)

Using the identities (3.2) and (3.3) one easily derives an equation for the remainder that

involves only the remainder and the coarse-grained process. We arrive at the following

system of equationsLεΦε,τ ;µ = Jε;µ ∗ (Fε,τ ;µ[Φε,τ ;µ] + ζε,τ ;µ)

ζε,τ ;µ = −
∫ µ

0
(Hε,τ ;η[Φε,τ ;η] + DFε,τ ;η[Φε,τ ;η] · (Ġε;η ∗ ζε,τ ;η)) dη ,

(3.4)

where

Hε,τ ;η[φ] := ∂ηFε,τ ;η[φ] + DFε,τ ;η[φ] · (Ġε;η ∗ Fε,τ ;η[φ]). (3.5)

We view (3.4) as a system of equations for

(0, µ̄] ∋ µ 7→ (Φε,τ ;µ, ζε,τ ;µ) ∈ C♭(Λε,τ )
2, (3.6)

where µ̄ ∈ (0, 1] is an arbitrary terminal scale.

Remark 3.18. It will play an important role that (3.4) is a closed system of equations for

any choice of the terminal scale µ̄ ∈ (0, 1]. In order to derive an a priori estimate for the

stochastic quantization equation (3.1) using the system of equations (3.4) we will choose

µ̄ ∈ (0, 1] small and random.

The advantage of the system of equations (3.4) over the stochastic quantization equa-

tion (3.1) is that the system of equations remains meaningful in the continuum limit ε↘ 0

provided an effective force Fε,τ ;µ is chosen appropriately. In informal terms, we have to

choose an effective force Fε,τ ;µ so that it admits a continuum limit for all µ ∈ (0, 1] and

Hε,τ ;η, the source term in the equation for the remainder, is in some sense small so that

Hε,τ ;η[Φε,τ ;η] remains integrable in η ∈ [0, 1] at η = 0 in the continuum limit. Since Hε,τ ;η

is a function of Fε,τ ;µ, the above smallness condition for Hε,τ ;η is a constraint for Fε,τ ;µ.

A natural choice for the effective force Fε,τ ;µ is to define it so that Hε,τ ;µ = 0, i.e. the

following flow equation is satisfied

∂µFε,τ ;µ[φ] + DFε,τ ;µ[φ] · (Ġε;µ ∗ Fε,τ ;µ[φ]) = 0.

Then the unique solution of the equation for the remainder is ζε,τ ;µ = 0. Constructing

an exact solution Fε,τ ;µ[φ] of the flow equation is quite complicated and is typically only

possible if a small parameter is available. For this reason, we choose instead Fε,τ ;µ that

satisfies the flow equation up to some small error term Hε,τ ;µ.
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3.3 Construction of effective force

Definition 3.19. We define i♯, i♭ ∈ N+ as the largest integers such that

dim(ξ) + i♯ dim(λ) ≤ 0, dim(ξ)− dim(Φ) + i♭ dim(λ) ≤ 0,

where the dimensions dim(ξ), dim(Φ), dim(λ) are introduced in Def. 2.2. We set m♭ := 3i♭.

Remark 3.20. Note that for dim(λ) > 0 is small, that is close to criticality, the constants

i♯, i♭,m♭ are big.

In this section we construct a suitable effective force functional Fε,τ ;µ. As we mentioned

in the previous section, roughly speaking, an effective force Fε,τ ;µ has to be chosen in such

a way that it admits a continuum limit for all µ ∈ (0, 1] and the functional Hε,τ ;η, defined

by Eq. (3.5), is such that Hε,τ ;η[Φε,τ ;η] remains integrable in η ∈ [0, 1] at η = 0 in the

continuum limit. It turns out that a suitable choice of the mass counterterm is essential for

the existence of the continuum limit. This will become apparent in Sec. 5. In order to satisfy

the integrability condition for Hε,τ ;η we proceed as follows. We introduce a book-keeping

parameter λ ∈ R in the expression for the force

Fε,τ [φ] = Fε,τ ;µ=0[φ] = ξε,τ − λφ3 +

i♯∑
i=1

λi r(i)ε,τ φ.

Subsequently, we demand that the effective force Fε,τ ;µ[φ] satisfies the flow equation

∂µFε,τ ;µ[φ] + DFε,τ ;µ[φ] · (Ġε;µ ∗ Fε,τ ;µ[φ]) = Hε,τ ;µ[φ] = O(λi♭+1) (3.7)

up to an error term Hε,τ ;µ[φ] of order λ
i♭+1.

Remark 3.21. The parameter λ plays the role of the strength of the nonlinear term and will

be set to 1 later. Note that we assumed that the mass counterterm is a polynomial in λ.

Remark 3.22. The effective force constructed in this section satisfies the crucial bounds

formulated in Theorem 4.9. However, the constant CF
ε,τ (κ, α, β) that appears in these bounds

has moments uniformly bounded in the lattice spacing ε ∈ A only if the mass counterterms

(r
(i)
ε,τ )i∈{1,...,i♯} are chosen appropriately.

In order to construct an approximate solution of the flow equation we make the following

ansatz for the effective force

Fε,τ ;µ[φ](z) =

i♭∑
i=0

λi
3i∑

m=0

∫
Λm

ε

F i,m
ε,τ ;µ(z; dz1, . . . ,dzm) φ(z1) . . . φ(zm), (3.8)

where F i,m
ε,τ ;µ ∈ S ′(Λ1+m

ε ) are called the effective force coefficients.
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Remark 3.23. The non-vanishing force coefficients F i,m
ε,τ = F i,m

ε,τ ;µ=0 take the following form

F 0,0
ε,τ (z) = ξε,τ (z), F 1,3

ε,τ (z; dz1,dz2,dz3) = −δ(z)Λε
(dz1)δ

(z)
Λε

(dz2)δ
(z)
Λε

(dz3),

F i,1
ε,τ (z; dz1) = r(i)ε,τ δ

(z)
Λε

(dz1), i ∈ {0, . . . , i♯},

where (r
(i)
ε,τ )i∈{1,...,i♯} are the counterterms and δ

(z)
Λε

∈ S ′(Λε) is the Dirac delta at z ∈ Λε.

The above ansatz (3.8) for the effective force and Eq. (3.7) imply that the effective force

coefficients satisfy the following flow equation

∂µF
i,m
ε,τ ;µ = −

i∑
j=0

m∑
k=0

(k + 1)B(Ġε;µ, F
j,k+1
ε,τ ;µ , F i−j,m−k

ε,τ ;µ ), (3.9)

where the map B is defined by

B(G,W,U)(z; dz1, . . . ,dzm) :=
1

m!

∑
π∈Pm

∫
Λ2

ε,τ

W (z; dz0,dzπ(1), . . . ,dzπ(k))

×G(z0 − w)U(w; dzπ(k+1), . . . ,dzπ(m)) dw.

The effective force coefficients are constructed recursively as follows:

(0) F 0,0
ε,τ ;µ := ξε,τ and F i,m

ε,τ ;µ := 0 if m > (1 + 2i) ∧ 3i.

(1) Assuming that all F i,m
ε,τ ;µ with i < i◦, or i = i◦ and m > m◦ were constructed we define

∂µF
i,m
ε,τ ;µ with i = i◦ and m = m◦ by Eq. (3.9).

(2) F i,m
ε,τ ;µ := F i,m

ε,τ +
∫ µ

0
∂ηF

i,m
ε,τ ;η dη.

Remark 3.24. The effective force coefficients F i,m
ε,τ ;µ are multi-linear functionals of the white

noise ξε,τ and in addition depend on the counterterms (r
(i)
ε,τ )i∈{1,...,i♯} and the book-keeping

parameter λ. The parameter λ was introduced only to motivate the ansatz (3.8) for the

effective force. In what follows, we set λ = 1.

Remark 3.25. Using the flow equation (3.9) and the condition F i,m
ε,τ ;µ = 0 if m > (1+2i)∧3i

one shows that

∂µF
0,0
ε,τ ;µ = 0, ∂µF

1,3
ε,τ ;µ = 0.

Hence, at any scale µ ∈ [0, 1] the sum in the ansatz (3.8) for the effective force Fε,τ ;µ[φ](z)

includes the noise term ξε,τ (z) and the cubic term −φ(z)3. The fact that the prefactor of

the cubic term does not depend on the scale µ plays an important role in the proof of the a

priori estimate presented in Sec. 4, cf. the second of the bounds in (4.3).

Definition 3.26. The finite collection {F i,m
ε,τ ;µ |m ∈ {0, . . . , (1 + 2i)∧ 3i}, i ∈ {0, . . . , i♭}} of

effective force coefficients that appear in the ansatz for the effective force Fε,τ ;µ is called the

enhanced noise.

Remark 3.27. The enhanced noise introduced above plays an analogous role to the model

in the regularity structure framework.
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3.4 Stochastic estimates

In this section we present bounds for moments of elements of the enhanced noise called the

stochastic estimates. The main result of this section is Theorem 3.39.

Definition 3.28. Let ε ∈ A. We define Kε;µ ∈ S ′(Λε) to be the solution of the equation

(1 + µσ∂t)(1− µ2∆ε)
2Kε;µ = δ

(0)
Λε
,

where δ
(0)
Λε

∈ S ′(Λε) is the Dirac delta at the origin. For n,m ∈ N0 we set

Kn,m
ε;µ := (δ

(0)
Λε

)⊗n ⊗ (Kε;µ)
⊗m, K̃n,m

ε;µ := (Kε;µ)
⊗n ⊗ (Kε;µ ∗Kε;µ)

⊗m.

Remark 3.29. Even though, in contrast to Jε;µ, the kernel Kε;µ is not smooth, the convolu-

tion of a distribution with Kε;µ has some smoothing effect.

Definition 3.30. Let µ ∈ (0, 1], α, β ∈ [0,∞), m ∈ N0 and γ := (dim(ξ) + 3κ)/3. The

weight wµ ∈ C(Λ0) is defined by

wµ(z) := (1 + µ6γ/κ|z|2σ)−1/6, w̃µ(z) :=
(
1 + µ−2|z|2σ

)1/2
.

where the parabolic distance |• |σ was introduced in Def. 3.8. The weight w̃m,α,β
µ ∈ C(Λ1+m

0 )

is defined by

w̃m,α,β
µ (z; z1, . . . , zm) := max

i∈{1,...,m}
wα

µ(z) w̃µ(zi − z)β

We set w̃m,β
µ := w̃m,0,β

µ .

Remark 3.31. Note that in order to prove the bound (2.2) implying tightness we have to

study a Besov norm in space of the solution Φε,τ of the stochastic quantization equation at

fixed time. We shall prove that

∥w1(Kε;µ ∗ LεΦε,τ )∥ ≲ µσ−3γ .

Using the fact that the operator Lε is of first order in the time direction and the kernel Kε;µ

is the inverse of the differential operator that is of first order in the time direction one shows

that the above bound implies ∥Φε,τ (t, •)∥Bε
≲ 1, where ∥•∥Bε

is the Hölder-Besov norm on

Rd
ε of regularity σ − 3γ with the weight w1(0, •).

Lemma 3.32. Let ε ∈ A. For all α ∈ [0,∞) the following bounds

(A) ∥wα
η (Jε;µ ∗ φ)∥ ≲ ∥wα

η (Kε;µ ∗ φ)∥ ≲ ∥wα
ηφ∥,

(B) ∥wα
η (Jε;µ ∗ φ)∥ ≲ ∥wα

η (Jε;ν/2 ∗ φ)∥ ≲ ∥wα
ηφ∥,

(C) ∥wα
η (Kε;µ ∗ φ)∥ ≲ ∥wα

η (Kε;ν ∗ φ)∥ ≲ ∥wα
ηφ∥,

hold uniformly in ε ∈ A, τ ∈ N+, η, µ ∈ (0, 1], ν ∈ (0, µ] and φ ∈ L∞(Λε,τ ).
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Proof. Note that Jε;µ = Jε;µ ∗ Jε;ν/2 and

Jε;µ = (1 + µσ∂t)(1− µ2∆ε)
2Jε;µ ∗Kε;µ, Kε;µ = (1 + νσ∂t)(1− ν2∆ε)

2Kε;µ ∗Kε;ν .

The stated bounds follow from the Young inequality for convolution.

Definition 3.33. For κ ∈ [0, 1] and i,m ∈ N0 we define

ϱκ(i,m) := −(dim(ξ) + 3κ) + i(dim(λ)− 9κ) +m(dim(Φ) + 3κ) + κ

We omit κ if κ = 0.

Remark 3.34. Note that i♭, i♯ ∈ N+, introduced in Def. 3.19, are the smallest positive integers

such that ϱ(i♭ + 1, 0) > 0, ϱ(i♯ + 1, 1) > 0, respectively.

Remark 3.35. Recall that F i,m
ε,τ ;µ are the effective force coefficients constructed using the

recursive procedure presented in Sec. 3.3 and rε,τ =
∑i♯

i=1 r
(i)
ε,τ ∈ R is the mass counterterm.

Definition 3.36. Let ε ∈ A, τ ∈ N+ and m ∈ N0. The vector space Vm
ε,τ consists of kernels

V ∈ S ′(Λ1+m
ε ) of operators Cb(Λ

m
ε,τ ) 7→ Cb(Λε,τ ) such that the following norm

∥V ∥Vm
ε,τ

:= sup
x∈Λε

∫
Λm

ε

|V (x; dy1 . . . dym)|

is finite.

Definition 3.37. For κ, α ∈ (0, 1], β ∈ [0, σ) and ε ∈ A, τ ∈ N+ the random variable

CF
ε,τ (κ, α, β) ∈ R is defined by

CF
ε,τ (κ, α, β) := 1 +

i♭∑
i=0

3i∑
m=0

sup
µ∈(0,1]

µ−ϱκ(i,m)∥w̃m,α,β
µ (K̃1,m

ε;µ ∗ F i,m
ε,τ ;µ)∥V m

ε,τ
. (3.10)

Remark 3.38. Note that CF
ε,τ (κ, α, β) is monotonically decreasing in κ, α ∈ (0, 1] and in-

creasing in β ∈ [0, σ).

Theorem 3.39. There exists a choice of the counterterms (r
(i)
ε,τ )ε∈A,τ∈N+,i∈{1,...,i♯} such

that for all κ, α ∈ (0, 1], β ∈ [0, σ) and p ∈ [1,∞) it holds

sup
ε∈A,τ∈N+

E(CF
ε,τ (κ, α, β))

p <∞. (3.11)

Remark 3.40. The above theorem implies, for example, that the white noise ξε,τ = F 0,0
ε,τ ;µ

satisfies the bound

sup
ε∈A,τ∈N+

E

(
sup

µ∈(0,1]

µ−(dim(ξ)+2κ) ∥wα
µ(Kε;µ ∗ ξε,τ )∥

)p

<∞.

Note that the above bound is only true if κ > 0 and α > 0.
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Remark 3.41. Because of the presence of the weight w̃m,α,β
µ in Eq. (3.10) the bound (3.11)

with β > 0 says that the effective force coefficients F i,m
ε,τ ;µ are in some sense localized close

to the diagonal {(z, . . . , z) ∈ Λ1+m
ε }. The assumption β < σ is related to the fact that for

σ /∈ 2N+ the fractional heat kernel Gε decays only polynomially at infinity and satisfies the

estimates stated in Lemma 3.10 only for β < σ.

Remark 3.42. In order to prove the above theorem we first establish uniform bounds for the

cumulants of the effective force coefficients, which are stated in stated in Theorem 5.6. The

rest of the proof is a combination of a Kolmogorov-type argument and a certain deterministic

argument based on the flow equation for the effective force coefficients.

4 Coercive estimate and tightness

In this section we use the system of equations (3.4) for the coarse grained process and the

remainder to derive an a priori estimate for the stochastic quantization equation that implies

tightness of (νε,τ )ε∈A,τ∈N+ . We first discuss the general idea of the proof by presenting an

elementary application of the maximum principle in Sec. 4.1. Next, in Sec. 4.2 we show

how to adapt the argument to the weighted setting and obtain an estimate applicable to the

system of equations (3.4). In Sec. 4.3 we derive auxiliary estimates for the effective force

and the source term in the equation for the remainder. Finally, in Sec. 4.4 we present the a

priori estimate. The main result of this section is Theorem 4.17.

4.1 Application of maximum principle

In the lemma below we present a simple but not directly useful application of the maximum

principle. In the remark below we argue how to obtain an interesting estimate using the

idea of the proof of this lemma.

Lemma 4.1. Let σ ∈ (0, 2]. For all Ψ ∈ C∞
0 (Λε,τ ) we have ∥Ψ∥3 ≤ ∥f∥, where

f := (∂t + (−∆ε)
σ/2)Ψ + Ψ3. (4.1)

Proof. Since Ψ is continuous and vanishes at infinity, Ψ attains a maximum at some point

z⋆ ∈ Λε,τ = R×Td
ε,τ . We have (∂tΨ)(z⋆) = 0 and (−∆εΨ)(z⋆) ≥ 0. Moreover, for σ ∈ (0, 2)

it holds

((−∆ε)
σ/2Ψ)(z⋆) = Cσ

∫ ∞

0

(Ψ(z⋆)− (es∆εΨ)(z⋆))s
−1−σ/2ds ≥ 0.

The inequality follows from the positivity of kernel of es∆ε and the identity es∆ε1 = 1.

Consequently, we obtain

sup
z∈Λε,τ

Ψ(z)3 ≤ Ψ(z⋆)
3 ≤ ((∂t + (−∆ε)

σ/2)Ψ)(z⋆) + Ψ(z⋆)
3 = f(z⋆) ≤ ∥f∥.

To complete the proof we apply the above reasoning to −Ψ .
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Remark 4.2. The usefulness of the above elementary lemma is limited by the assumption

that Ψ vanishes at infinity. In typical applications Ψ can grow polynomially at infinity and

one has to apply the argument from the proof of the above lemma to wΨ , where w is a

suitable weight decaying sufficiently fast at infinity.

Lemma 4.3. Let ŵ ∈ C(Λ0) be a weight defined by ŵ(z) = (1 + c|z|2σ)−1/6 for all z ∈ Λ0.

There exists c⋆ ∈ (0, 1) such that

∥ŵΨ∥3 ≤ ∥ŵ3f∥ + ∥ŵΨ∥+ ∥ŵΨ∥1−σ/2 ∥ŵ∇Ψ∥σ/2

for all c ∈ (0, c⋆) and Ψ ∈ C∞(Λε,τ ) such that wΨ ∈ C∞
0 (Λε,τ ), where f is related to Ψ by

Eq. (4.1).

Proof. We multiply both sides of Eq. (4.1) by ŵ3 and rewrite the resulting equation in the

form

ŵ3f + ŵ2
[
∂t + (−∆ε)

σ/2, ŵ
]
Ψ = ŵ2(∂t + (−∆ε)

σ/2)(ŵΨ) + (ŵΨ)3,

where [• , • ] denotes the commutator. Application of the argument from the proof of Lemma 4.1

to the above equation yields

∥ŵΨ∥3 ≤ ∥ŵ3f∥ +
∥∥ŵ2

[
∂t + (−∆ε)

σ/2, ŵ
]
Ψ
∥∥.

We need to bound the commutator term, which is elementary if σ = 2 but nontrivial if

σ ∈ (0, 2). It is useful to introduce the following map

Dσ
ε (φ,ψ) := (−∆ε)

σ/2(φψ)− φ(−∆ε)
σ/2ψ − ψ(−∆ε)

σ/2φ.

One shows that it satisfies the bounds

|Dσ
ε (φ,ψ)| ≤ Dσ

ε (φ,φ)
1/2Dσ

ε (ψ,ψ)
1/2, ∥Dσ

ε (φ,φ)∥1/2 ≲ ∥φ∥1−σ/2∥∇φ∥σ/2. (4.2)

The first of the bounds (4.2) implies that∥∥ŵ2
[
(−∆ε)

σ/2, ŵ
]
Ψ
∥∥ = ∥ŵ4Ψ(−∆ε)

σ/2(1/ŵ)− ŵ3Dσ
ε (1/ŵ, ŵΨ)∥

≤ ∥ŵ3(−∆ε)
σ/2(1/ŵ)∥ ∥ŵΨ∥+ ∥ŵ3Dσ

ε (1/ŵ)
1/2∥ ∥Dσ

ε (ŵΨ)
1/2∥.

Hence, using the second of the bounds (4.2) we obtain∥∥ŵ2
[
(−∆ε)

σ/2, ŵ
]
Ψ
∥∥

≲
(
∥ŵ3(−∆ε)

σ/2(1/ŵ)∥+ ∥ŵ3Dσ
ε (1/ŵ)

1/2∥ ∥1/ŵ∇ŵ∥σ/2
)
∥ŵΨ∥

+ ∥ŵ3Dσ
ε (1/ŵ)

1/2∥ ∥ŵΨ∥1−σ/2 ∥ŵ∇Ψ∥σ/2.

One proves there exists c⋆ ∈ (0, 1) such that

∥ŵ3(−∆ε)
σ/2(1/ŵ)∥+ ∥ŵ3Dσ

ε (1/ŵ)
1/2∥ ∥1/ŵ∇ŵ∥σ/2 + ∥ŵ3Dσ

ε (1/ŵ)
1/2∥ ≤ 1
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for all c ∈ (0, c⋆). In consequence, we have∥∥ŵ2
[
∂t + (−∆ε)

σ/2, ŵ
]
Ψ
∥∥ ≲ ∥ŵΨ∥+ ∥ŵΨ∥1−σ/2 ∥ŵ∇Ψ∥σ/2.

This finishes the proof.

4.2 Coercive estimate with weight

In this section we derive an estimate applicable to the system of equations (3.4). Recall that

we view (3.4) as the system of equation for the pair (3.6) consisting of the coarse grained

process and the remainder at scales µ ∈ (0, µ̄], where µ̄ ∈ (0, 1] is a terminal scale that at

this stage is arbitrary.

Definition 4.4. Let ε ∈ A, τ ∈ N+, κ, µ̄ ∈ (0, 1] and Φ • , f • : (0, 1] → C♭(Λε,τ ). We define

the following norms

|||µ 7→ Φµ|||µ̄ := sup
µ∈(0,µ̄]

µγ ∥wµΦµ∥, |||µ 7→ fµ|||♯,µ̄ := sup
µ∈(0,µ̄]

µ3γ ∥w3
µfµ∥,

where γ := (dim(ξ) + 3κ)/3 and the weight wµ is introduced in Def. 3.30.

Remark 4.5. If Φε;µ = Jε;µ ∗ Φ, then |||µ 7→ Φε;µ|||µ̄ is related to the spacetime Besov norm

with regularity −γ. The difference is that the supremum is taken over scales µ smaller than

the terminal scale µ̄ and the weight wµ depends on the scale µ. It is easy to show that

∥Φ∥B−γ
∞,∞(Λε,w1)

≤ c µ̄−γ |||µ 7→ Φε;µ|||µ̄,

where c ∈ (0,∞) is a universal constant.

Lemma 4.6. Let κ ∈ (0, 1] and

Φε;µ := Jε;µ ∗ Φ, fε;µ := LεΦε;µ + Φ3
ε;µ

for Φ ∈ C♭(Λε,τ ) and ε ∈ A, µ ∈ (0, 1]. Then there exists C ∈ (0,∞) such that for all ε ∈ A,

τ ∈ N+, µ̄ ∈ (0, 1] and Φ ∈ C♭(Λε,τ ) the following bound is true

|||µ 7→ Φε;µ|||3µ̄ ∨ |||µ 7→ LεΦε;µ|||♯,µ̄ ≤ C
(
µ̄κ + |||µ 7→ fε;µ|||♯,µ̄

)
.

Remark 4.7. By Remark 4.5 the lemma stated above allows to control the Besov norm of Φ

with regularity −γ in terms of the norm |||µ 7→ fε;µ|||♯,µ̄. When applying the above lemma

to the equation for the coarse grained process in order to bound |||µ 7→ fε;µ|||♯,µ̄ roughly

speaking we have to choose γ so that −3γ coincides with the regularity to the white noise

in the continuum. This suggest that we should be able to control the Besov norm of the

solution of the stochastic quantization equation (3.1) with regularity −γ equal to one third

of the regularity of the white noise. Note that −γ < −3γ+σ, where −3γ+σ is the expected
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regularity of the solution indicated by the smoothing effect of the inverse of the parabolic

differential operator. The fact that −γ < −3γ + σ is not problematic because −γ turns out

to be big enough and anyway close to the critical threshold σ = d/2 the optimal regularity

is close to −γ. Note that the gain of regularity from −3γ and −γ is produced in some sense

by the coercive cubic term.

Remark 4.8. In order to prove that above lemma we use the argument outlined in Re-

mark 4.2. Note that by the support property of the Fourier transform of Jε;µ it holds

∥wµ∇Ψε;µ∥σ/2 ≲ µ−σ/2 ∥wµΨε;µ∥σ/2. Alternatively, one could also bound ∥wµ∇Ψε;µ∥ in

terms of ∥wµLεΨε;µ∥ and then use Lemma 4.14 to account for the fact that the norm

|||µ 7→ LεΦε;µ|||♯,µ̄ involves the weight w3
µ and not wµ. Finally, we apply the Young inequality

for products and the bound 3(2γ − σ/2)/2 ≥ κ.

4.3 Auxiliary bounds

In this section we show that the effective force functional Fε,τ ;µ and the source term Hε,τ ;µ

in the equation for the remainder can be controlled in terms of the constant CF
ε,τ (κ, κ, 1)

measuring the size of the enhanced noise introduced in Def. (3.37).

Theorem 4.9. For all κ ∈ (0, 1] sufficiently small there exists c ∈ (0,∞) such that for all

ε ∈ A, τ ∈ N+, µ̄ ∈ (0, 1], µ ∈ (0, µ̄], η ∈ (0, µ] and Φ, ζ ∈ C♭(Λε,τ ) it holds

µ3γ ∥wµ(Jε;µ ∗ Φ3
ε;µ − Φ3

ε;µ)∥ ≤ c µ̄κ |||Φε; • |||2µ̄ |||LεΦε; • |||♯,µ̄

µ3γ ∥wµ(Jε;µ ∗ (Fε,τ ;µ[Φε;µ] + Φ3
ε;µ))∥ ≤ cCF

ε,τ µ̄
κ(1 + |||Φε; • |||µ̄)

m♭

(4.3)

and

µ3γ ∥wµ(Kε;µ ∗ Fε,τ ;µ[Φε;µ])∥ ≤ cCF
ε,τ (1 + |||Φε; • |||µ̄)

m♭ (4.4)

as well as

∥w2
µwη(Kε;η ∗ (DFε,τ ;η[Φε;η] · (Ġε;η ∗ ζ)))∥ ≤ cCF

ε,τ η
κ−1(1 + |||Φε; • |||µ̄)

m♭∥w2
µζε;η∥,

∥w2
µwη(Kε;η ∗Hε,τ ;η[Φε;η])∥ ≤ c (CF

ε,τ )
2 ηκ−1(1 + |||Φε; • |||µ̄)

2m♭ ,
(4.5)

where Φε;µ = Jε;µ ∗Φ, ζε,µ = Kε;µ ∗ ζ, the functional Fε,τ ;µ is the effective force constructed

in Sec. 3.3, the functional Hε,τ ;η is defined by Eq. (3.5), the constant CF
ε,τ := CF

ε,τ (κ, κ, 1) is

introduced in Def. (3.37) and m♭ is introduced in Def. 3.19.

Remark 4.10. The proof of all of the bounds relies crucially on Lemma 4.14 stated below,

which shows that the weight in the expressions for the norms |||• |||µ̄, |||• |||♯,µ̄ can be replaced

with a weight decaying at infinity at a slower rate.

Remark 4.11. The bounds (4.3) say that the size of Jε;µ ∗Fε,τ ;µ[Φε;µ] measured with the use

of the norm |||• |||♯,µ̄ is a small perturbation of order µ̄κ of the cubic term Φε;µ if the terminal

scale µ̄ ∈ (0, 1] is chosen small and the norms |||Φε; • |||µ̄, |||LεΦε; • |||♯,µ̄ are bounded.
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Remark 4.12. In the proof of the second of the bounds (4.3) we use the fact that at all scales

µ ∈ [0, 1] the sum in the ansatz (3.8) for the effective force Fε,τ ;µ[φ] contains the cubic term

φ(z) with the prefactor −1. Note that the sum in the ansatz (3.8) contains also the white

noise term ξε,τ . Observe that for this term we have the following estimate

µ3γ ∥wµ(Jε;µ ∗ ξε,τ ))∥ ≤ µ3γ ∥wκ
µ(Jε;µ ∗ ξε,τ ))∥ ≤ c µ̄κµ−ϱκ(0,0) ∥wκ

µ(Kε;µ ∗ ξε,τ ))∥ = cCF
ε,τ µ̄

κ,

where we used the identity ϱκ(0, 0) = −3γ + κ, Lemma 3.32 (A), Def. (3.37) of CF
ε,τ (κ, κ, 1)

and the fact that ∥•∥V 0
ε,τ

= ∥•∥L∞(Λε).

Remark 4.13. The last of the bound (4.5) relies crucially on the fact that the parameter

i♭ ∈ N+ in Eq. (3.7) is chosen big enough, that is the effective force Fε,τ ;µ solves the flow

equation up to a sufficiently small error term.

Sketch of the proof. The fact that Φε;µ ∈ C((0, 1], C♭(Λε,τ )) is of the form Φε;µ = Jε;µ ∗Φ is

only used in the proof of the first of the bounds (4.3). In order to prove this bound we use

the following decomposition

Φε;µ = Φε;6µ + (Φε;µ − Φε;6µ)

of Φε;µ into low- and high-frequency parts. By Def. 3.2 the Fourier transform of Jε;µ is equal

to 1 on the support of Φ3
ε;6µ. As a consequence,

Jε;µ ∗ Φ3
ε;6µ − Φ3

ε;6µ = 0

and

∥wµ(Jε;µ ∗ Φ3
ε;µ − Φ3

ε;µ)∥ ≤ c
(
∥wκ

µΦε;µ∥2 + ∥wκ
µΦε;6µ∥2

)
∥wκ

µ(Φε;µ − Φε;6µ)∥

provided κ ∈ (0, 1/3], where c ∈ (0,∞) is a universal constant. By Lemma 4.14 and the

fact that the support of the Fourier transform of Φε;µ − Φε;6µ is contained in a shell and

Φε;6µ = Jε;6µ ∗ Φε;µ we obtain

µγ ∥wκ
µΦε;6µ∥ ≤ c µγ ∥wκ

µΦε;µ∥ ≤ c |||Φε; • |||µ̄,

µγ ∥wκ
µ(Φε;µ − Φε;3µ)∥ ≤ c µσ−2γ |||LεΦε; • |||♯,µ̄,

where c ∈ (0,∞) is a universal constant. The first of the bounds (4.3) follows since σ−2γ ≥ κ

provided κ ∈ (0, 1] is small enough.

Let us proceed to the proof of the remaining bounds. By Remark 3.25 we have

F 1,3
ε,τ ;µ(z; dz1,dz2,dz3) = F 1,3

ε,τ (z; dz1,dz2,dz3) = −δ(z)Λε
(dz1)δ

(z)
Λε

(dz2)δ
(z)
Λε

(dz3). (4.6)

Consequently, Fε,τ ;µ[Φε;µ] + Φ3
ε;µ is given by the sum (3.8) with the term i = 0, m = 3

removed. The second of the bounds (4.3) with Jε;µ replaced by Kε;µ follows then directly

from Def. 3.37 of CF
ε,τ (κ, α, β) and the fact that

ϱκ(i,m) + (dim(ξ) + 3κ)−m(dim(ξ) + 3κ)/3 ≥ κ

20



for all i,m ∈ N0 such that F i,m
ε,τ ;µ ̸= 0 and (i,m) ̸= (1, 3) provided κ ∈ (0, 1] is small enough.

The second of the bounds (4.3) is now a consequence of Lemma 3.32 (A). The bounds (4.4)

follows from the second of the bounds (4.3) with Jε;µ replaced by Kε;µ and Eq. (4.6). To

prove the first of the bounds (4.5) we use Def. 3.37 of CF
ε,τ (κ, α, β), the first of the bounds

stated in Lemma 3.10, Eq. (4.6) and the fact that

ϱκ(i,m) + σ − (m− 1)(dim(ξ) + 3κ)/3 ≥ κ

for all i,m ∈ N0 such that F i,m
ε,τ ;µ ̸= 0 and (i,m) ̸= (1, 3) provided κ ∈ (0, 1] is small enough.

Finally, the proof of the second the bounds (4.5) relies on the fact that ϱκ(i,m) ≥ κ for all

i ∈ {i♭ + 1, i♭ + 2, . . .} and for all m ∈ N0 such that F i,m
ε,τ ;µ ̸= 0 provided κ ∈ (0, 1] is small

enough.

Lemma 4.14. For all κ ∈ (0, 1] there exists C ∈ (0,∞) such that

sup
µ∈(0,µ̄]

µγ ∥wκ
µΦε;µ∥ ≤ C |||µ 7→ Φε;µ|||µ̄, sup

µ∈(0,µ̄]

µ3γ ∥w3κ
µ Φε;µ∥ ≤ C |||µ 7→ Φε;µ|||♯,µ̄ (4.7)

for all ε ∈ A, τ ∈ N+ and Φ ∈ C♭(Λε,τ ), where Φε;µ = Jε;µ ∗ Φ.

Remark 4.15. Note that the weight wµ(z) = (1 + µ6γ/κ|z|2σ)−1/6 introduced in Def. 3.30

depends implicitly on κ.

Remark 4.16. In order to make the lemma plausible observe that

∥wµ/2iΦε;µ∥ = ∥wµ/2i(Jε;µ ∗ Φε;µ/2i)∥ ≲ ∥wµ/2iΦε;µ/2i∥ ≤ (µ/2i)−γ |||µ 7→ Φε;µ|||µ̄

uniformly in ε ∈ A, τ ∈ N+, µ ∈ (0, µ̄] and i ∈ N+ and Φ ∈ C♭(Λε,τ ), where we used the

identity Jε;µ ∗ Jε;µ/2i = Jε;µ and Lemma 3.32 (B). The above estimate says that the weight

wµ in the trivial bound

∥wµΦε;µ∥ ≤ µ−γ |||µ 7→ Φε;µ|||µ̄
can be replaced by a flatter weight wµ/2i at a cost of extra factor 2γi.

Proof. Let (χi)i∈{−1}∪N0
be smooth dyadic decomposition of unity on Λ0 such that χi(z) =

χ0(2
−iz) for i ∈ N+ and for every z ∈ Λ0 it holds χi−1(z) + χi(z) + χi+1(z) ≥ 1 for some

i ∈ N0. Set χi,µ(z) = χi(µ
3γ/κz). We have

µγ ∥wκ
µΦε;µ∥ ≤ 3µγ ∥χ−1,µw

κ
µΦε;µ∥ + 3µγ sup

i∈N0

∥χi,µw
κ
µΦε;µ∥

It holds that

∥χ−1,µw
κ
µΦε;µ∥ ≤ ∥wµΦε;µ∥

and

∥χi,µw
κ
µΦε;µ∥ = ∥χi,µw

κ
µ(Jε;µ ∗ Φε;µ/2i)∥ ≲ ∥χi,µw

κ
µ/wµ/2i∥∥wµ/2i(Jε;µ ∗ Φε;µ/2i)∥.
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Note that ∥χi,µw
κ
µ/wµ/2i∥ ≲ 2−iγ . Moreover, ∥wµ/2i(Jε;µ ∗ Φε;µ/2i)∥ ≲ ∥wµ/2iΦε;µ/2i∥ by

Lemma 3.32 (B). Hence,

∥χi,µw
κ
µΦε;µ∥ ≲ 2−iγ∥wµ/2iΦε;µ/2i∥.

Consequently,

µγ ∥wκ
µΦε;µ∥ ≲ µγ ∥wµΦε;µ∥ + µγ sup

i∈N0

2−iγ∥wµ/2iΦε;µ/2i∥ ≲ C |||µ 7→ Jε;µ ∗ Φ|||µ̄.

This proves the first of the bounds (4.7). The proof of the second bound follows the same

lines.

4.4 A priori estimate

Let Φε,τ be the stationary solution of the stochastic quantization equation (3.1) and let

Φε,τ ;µ be the corresponding coarse-grained process. Suppose that the effective force Fε,τ ;µ

is of the form (3.8), where the effective force coefficients are constructed as discussed in

Sec. 3.3. Recall that the stochastic quantization equation (3.1) is equivalent to the following

system of equationsLεΦε,τ ;µ + Φ3
ε,τ ;µ = fε,τ ;µ

ζε,τ ;µ = −
∫ µ

0
(Hε,τ ;η[Φε,τ ;η] + DFε,τ ;η[Φε,τ ;η] · (Ġε;η ∗ ζε,τ ;η)) dη

(4.8)

for the pair (3.6) consisting of the coarse-grained process and the remainder, where

fε,τ ;µ := (Jε;µ ∗ Fε,τ ;µ[Φε,τ ;µ] + Φ3
ε,τ ;µ) + Jε;µ ∗ ζε,τ ;µ. (4.9)

The deterministic estimate stated in the theorem below is the main technical result of these

notes. Below we argue how to combine this estimate with the bounds for moments of the

effective force coefficients established in Theorem 3.39 to conclude the bound (2.2) implying

tightness of (νε,τ )ε∈A,τ∈N+
.

Theorem 4.17. For all κ ∈ (0, 1] sufficiently small there exists c ∈ [1,∞) such that for all

ε ∈ A and τ ∈ N+ the following conditions

|||µ 7→ Φε,τ ;µ|||3µ̄ ∨ |||µ 7→ LεΦε,τ ;µ|||♯,µ̄ ≤ 1, µ̄−κ ≤ c (CF
ε,τ )

2

are satisfied for some µ̄ ≡ µ̄(ε, τ) ∈ (0, 1], where CF
ε,τ := CF

ε,τ (κ, κ, 1) is defined by Eq. (3.10).

Proof. Recall the stochastic process Φε,τ ;µ is the stationary solution the finite dimensional

stochastic differential equation (2.1). By elementary estimates one shows that for every fixed

ε ∈ A and τ ∈ N+ the function

(0, 1] ∋ µ̄ 7→ CF
ε,τ µ̄

κ ∨ |||µ 7→ Φε,τ ;µ|||3µ̄ ∨ |||µ 7→ LεΦε,τ ;µ|||♯,µ̄ ∈ [0,∞)
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is continuous, increasing and vanishes in the limit µ̄↘ 0. If the above function takes values

in [0, 1], then we choose µ̄ = 1 and the proof is finished. Otherwise let us fix µ̄ ∈ (0, 1] so

that the above function evaluated at µ̄ takes the value 1. By the coercive estimate proved

in Lemma 4.6 we obtain

1 = CF
ε,τ µ̄

κ ∨ |||µ 7→ Φε,τ ;µ|||3µ̄ ∨ |||µ 7→ LεΦε,τ ;µ|||♯,µ̄
≤ CF

ε,τ µ̄
κ ∨ C

(
µ̄κ + |||µ 7→ fε,τ ;µ|||♯,µ̄

)
. (4.10)

Using the auxiliary bounds (4.3) we get

|||µ 7→ (Jε;µ ∗ Fε,τ ;µ[Φε,τ ;µ] + Φ3
ε,τ ;µ)|||♯,µ̄ ≤ cCF

ε,τ µ̄
κ, (4.11)

where c ∈ (0,∞) is a universal constant. Using the auxiliary bounds (4.4) and (4.5) and

applying the Growall lemma to the second of the equations (4.8) we obtain

|||µ 7→ Jε;µ ∗ ζε,τ ;µ|||♯,µ̄ ≤ c (CF
ε,τ )

2µ̄κ, (4.12)

Consequently, by the bound (4.10), the equality (4.9) and the triangle inequality together

with the bounds (4.11), (4.12) we get

1 ≤ c (CF
ε,τ )

2µ̄κ,

where c ∈ (0,∞) is a universal constant. This finishes the proof.

Remark 4.18. The presence of the term CF
ε,τ µ̄

κ in the maximum in the first line of (4.10) is

only used in the proof of the bound (4.12) for the remainder given in the remark below.

Remark 4.19. Let us provide some details about the proof of the bound (4.12) for the

remainder claimed in the proof above. Observe that

µ3γ∥w2
µ(Kε;η ∗ ζε,τ ;η)∥ ≤ µ3γ∥w2

µwη(Kε;η ∗ ζε,τ ;η)∥+ µ3γ∥wµ(1− wη)∥∥wµ(Kε;η ∗ ζε,τ ;η)∥
≤ µ3γ∥w2

µwη(Kε;η ∗ ζε,τ ;η)∥+ c η3γ ∥wη(Kε;η ∗ ζε,τ ;η)∥

for 0 < η ≤ µ ≤ 1, where c ∈ (0,∞) is a universal constant. Recall that

LεΦε,τ ;η = Fε,τ ;η[Φε,τ ;η] + ζε,τ ;η.

Hence,

η3γ ∥wη(Kε;η ∗ ζε,τ ;η)∥ ≤ η3γ ∥wη(Kε;η ∗ LεΦε,τ ;η)∥+ η3γ ∥wη(Kε;η ∗ Fε,τ ;η[Φε,τ ;η])∥

Using Lemma 3.32 (A) and Lemma 4.14 we arrive at

η3γ ∥wη(Kε;η ∗ LεΦε,τ ;η)∥ ≤ c̃ η3γ ∥wη(Jε;η ∗ LεΦε,τ ;η)∥ ≤ c |||µ 7→ LεΦε,τ ;µ|||♯,µ̄ ≤ c,
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where c, c̃ ∈ (0,∞) are universal constant. Combining the above bounds with (4.4) and

|||µ 7→ Φε,τ ;µ|||µ̄ ≤ 1 we obtain

µ3γ∥w2
µ(Kε;η ∗ ζε,τ ;η)∥ ≤ µ3γ∥w2

µwη(Kε;η ∗ ζε,τ ;η)∥+ c+ cCF
ε,τ

for 0 < η ≤ µ ≤ 1, where c ∈ (0,∞) is a universal constant. Consequently, by the Gronwall

lemma, the auxiliary estimates (4.5) and CF
ε,τ µ̄

κ ≤ 1 we obtain the bound

µ3γ ∥w2
µwη(Kε;η ∗ ζε,τ ;η)∥ ≤ c (CF

ε,τ )
2µ̄κ exp(cCF

ε,τ µ̄
κ) ≤ c̃ (CF

ε,τ )
2µ̄κ

for 0 < η ≤ µ ≤ 1, where c, c̃ ∈ (0,∞) are some universal constants. By Lemma 3.32 (A)

the above bound implies

|||µ 7→ Jε;µ ∗ ζε,τ ;µ|||♯,µ̄ ≤ c̃ |||µ 7→ Kε;µ ∗ ζε,τ ;µ|||♯,µ̄ ≤ c (CF
ε,τ )

2µ̄κ, (4.13)

where c, c̃ ∈ (0,∞) are some universal constants.

It is easy to prove the following estimate for the parabolic spacetime Besov norm of the

solution of the stochastic quantization equation

∥Φε,τ∥B−γ
∞,∞(Λε,w1)

≤ c |||µ 7→ Φε,τ ;µ|||1 ≤ c2 µ̄−γ |||µ 7→ Φε,τ ;µ|||µ̄,

where c is a universal constant. Applying the above bound with the scale µ̄ = µ̄(ε, τ) chosen

as in Theorem 4.17 we show that

E∥Φε,τ∥pB−γ
∞,∞(Λ0,w1)

≤ cp E(CF
ε,τ )

2pγ/κ <∞

for all p ∈ N+, where the last bound is a consequence of Theorem 3.39. Unfortunately,

the above bound does not allow to conclude the desired bound (2.2) implying tightness of

(νε,τ )ε∈A,τ∈N+ . In order to prove (2.2) we need an estimate for the solution Φε,τ at a fixed

time. To this end, we choose the scale µ̄ = µ̄(ε, τ) as in Theorem 4.17 and prove that

|||Kε;µ ∗ LεΦε,τ |||♯,µ̄ = |||Kε;µ ∗ (Fε,τ ;µ[Φε,τ ;µ] + ζε,τ ;µ)|||♯,µ̄
≤ |||Kε;µ ∗ Fε,τ ;µ[Φε,τ ;µ]|||♯,µ̄ + |||Kε;µ ∗ ζε,τ ;µ|||♯,µ̄ ≤ cCF

ε,τ , (4.14)

where the last bound follows from the auxiliary estimate (4.4), the bound for the coarse-

grained process proved in Theorem 4.17 and the estimate (4.13) for the remainder established

in Remark 4.19. It turns out that with some effort one can prove the following Schauder-type

estimate

∥Φε,τ (0, •)∥Bσ−3γ
∞,∞ (Rd,w1(0, •))

≤ c µ̄−3γ |||µ 7→ Kε;µ ∗ LεΦε,τ |||♯,µ̄. (4.15)

As a result, by the bounds (4.14), (4.15) and Theorem 4.17 we conclude

E∥Φε,τ (0, •)∥pBσ−3γ
∞,∞ (Rd,w1(0, •))

≤ c2p E(CF
ε,τ )

p(6γ/κ+1) <∞

for all p ∈ N+. We stress that the last bound, which is a consequence of Theorem 3.39, is

only true for suitable choices of the mass counterterm. The above bound implies the desired

bound (2.2) and proves Item (A) of Theorem 1.1.
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5 Outline of the proof of stochastic estimates

In this section we present the proof of the uniform bounds for the cumulants of the effective

force coefficients, which is the main ingredient of the proof of the stochastic estimates stated

in Theorem 3.39. As mentioned in Remark 3.42, in order to conclude the stochastic estimates

from the bounds for the cumulants one uses an argument in the spirit of the Kolmogorov

continuity theorem and a certain deterministic argument based on the flow equation for

the effective force coefficients. The main result of this section is Theorem 5.6 stated in

Sec. 5.1. In Sec. 5.2 we a derive a certain flow equation for the cumulants of the effective

force coefficients and in Sec. 5.3 we use it to prove uniform bounds for the cumulants. In

particular, we discuss how to fix the mass counterterm. A simple inductive proof of the

bounds for cumulants inspired by [Pol84] is one of the main advantages of the flow equation

approach to singular SPDEs.

5.1 Cumulants of effective force coefficients

Definition 5.1. A list (i,m, s), where i ∈ {0, . . . , i♭}, m ∈ N0 and s ∈ {0, 1} is called an

index. For n ∈ N+ we call

I = ((i1,m1), . . . , (in,mn)) (5.1)

a list of indices. We define n(I) := n, i(I) := i1 + . . . + in, m(I) := (m1, . . . ,mn),

m(I) := m1 + . . .+mn and

ϱκ(I) := ϱκ(i1,m1) + . . .+ ϱκ(in,mm),

where ϱκ(i,m) is introduced in Def. 3.33. We omit κ if κ = 0.

Definition 5.2. We use the following notation E(ζ1, . . . , ζn) for the joint cumulant of the

random variables ζ1, . . . , ζn. Let I be a list of indices of the form (5.1). We denote by

EI
ε,τ ;µ ∈ S ′(Λ

n(I)+m(I)
ε ) the joint cumulant of the effective force coefficients defined by

⟨EI
ε,τ ;µ, ψ1 ⊗ . . .⊗ ψn ⊗ φ1 ⊗ . . .⊗ φn⟩ := E(⟨F i1,m1

ε,τ ;µ , ψ1 ⊗ φ1⟩, . . . , ⟨F in,mn
ε,τ ;µ , ψn ⊗ φn⟩)

for all ψq ∈ S (Λε), φq ∈ S (Λ
mq
ε ), q ∈ {1, . . . , n}.

Remark 5.3. For the definition of cumulants and their properties see, for example, [PT11].

Definition 5.4. Let µ ∈ (0, 1], β ∈ [0,∞), n ∈ N0, m = (m1, . . . ,mn) ∈ Nn
0 and

m = m1 + . . .+mn. The weight w̃m,β
µ ∈ C(Λn+m

0 ) is defined by

w̃m,β
µ (z1, . . . , zn; z1, . . . , zn) := w̃m1,β

µ (z1; z1) . . . w̃
mn,β
µ (zn; zn)

for all zq ∈ Λ0, zq ∈ Λ
mq

0 , q ∈ {1, . . . , n}, where the weight w̃m,β
µ was introduced in Def. 3.30.
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Definition 5.5. Let n ∈ N+, m = (m1, . . . ,mn) ∈ Nn
0 and m = m1 + . . . + mn. Recall

Def. 2.1 of the lattices Λε and Λε,τ . The vector space Vm
ε,τ ;t consists of translationally

invariant kernels V ∈ S ′(Λn+m
ε ) of operators Cb(Λ

m
ε,τ ) 7→ Cb(Λ

n
ε,τ ) such that the following

norm

∥V ∥Vm
ε,τ;t

:= sup
x1∈Λε

∫
Λn−1

ε,τ ×Λm
ε

|V (x1,dx2, . . . ,dxn; dy1, . . . ,dym)| (5.2)

is finite.

Theorem 5.6. There exists a choice of the counterterms (r
(i)
ε,τ )ε∈A,τ∈N+,i∈{1,...,i♯} such that

for all κ ∈ (0, 1], β ∈ [0, σ) and all list of indices I the following bound

∥w̃m(I),β
µ (Kn(I),m(I)

ε;µ ∗ EI
ε,τ ;µ)∥Vm

ε,τ;t
≲ µϱκ(I)+(σ+d)(n(I)−1)

holds uniformly in ε ∈ A, τ ∈ N+ and µ ∈ (0, 1], where Kn,m
ε;µ is introduced in Def. 3.28.

Remark 5.7. The above theorem is not true if one replaces cumulants by moments in the

definition of EI
ε,τ ;µ. The moments of the effective force coefficients satisfy a slightly different

bound, which, however, cannot be easily proved by induction.

Remark 5.8. In order to prove the stochastic estimate (3.11) stated in Theorem 3.39 with

κ = δ ∈ (0, 1] one has to use the bound stated in the above theorem with κ = δ/2. Actually,

we only use the bound for the expected value and the covariance and infer useful bounds

for higher moments using the fact that the effective force coefficients are multi-linear func-

tionals of the white noise ξε,τ and applying the Nelson hypercontractivity estimate [Nua06,

Lemma 1.1.1]. The presence of the weight w̃
m(I),β
µ in the bound in the above theorem with β

close to σ is essential to argue that the non-local remainder Ẽi,1
ε,τ ;µ introduced in Sec. 5.3 is

irrelevant. This suggests that the proof by induction of the bound without the weight is not

possible. The weight w̃
m(I),β
µ with β > 0 plays also a role in the Kolmogorov-type argument

used to infer the stochastic estimate (3.11) stated in Theorem 3.39.

5.2 Flow equation for cumulants

In this section we show that the derivative of the cumulant of the effective force coefficients

with respect to the scale parameter ∂µE
I
ε,τ ;µ is a linear combination of terms that can be

expressed in terms of EJ
ε,τ ;µ with lists of indices J such that i(J) < i(I), or i(J) = i(I) and

m(J) > m(I). To this end, we first note that

∂µE
I
ε,τ ;µ :=

n∑
l=1

E(F i1,m1
ε,τ ;µ , . . . , ∂µF

il,ml
ε,τ ;µ , . . . , F

in,mn
ε,τ ;µ ).
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The flow equation (3.9) for the effective force coefficients implies that

E(∂µF i1,m1
ε,τ ;µ , F i2,m2

ε,τ ;µ , . . . , . . . , F in,mn
ε,τ ;µ )

= −
i∑

j=0

m∑
k=0

(k + 1)E(B(Ġµ, F
j,k+1
ε,τ ;µ , F i1−j,m1−k

ε,τ ;µ ), F i2,m2
ε,τ ;µ , . . . , . . . , F in,mn

ε,τ ;µ ). (5.3)

Using the formula

E
(
(ζq)q∈I ,ΦΨ

)
= E

(
(ζq)q∈I ,Φ,Ψ

)
+

∑
I1,I2⊂I
I1∪I2=I

E
(
(ζq)q∈I1 ,Φ

)
E
(
(ζq)q∈I2 ,Ψ

)

one shows that the summands on the RHS of Eq. (5.3) are linear combinations of the

expressions of the form

A
(
Ġε;µ,E

(
F j,1+k
ε,τ ;µ , F i1−j,m1−k

ε,τ ;µ , (F iq,mq
ε,τ ;µ )q∈I

))
or

B
(
Ġε;µ,E

(
F j,1+k
ε,τ ;µ , (F iq,mq

ε,τ ;µ )q∈I1

)
,E
(
F i1−j,m1−k
ε,τ ;µ , (F iq,mq

ε,τ ;µ )q∈I2

))
,

where A,B are certain multi-linear maps and the subsets I1, I2 ⊂ I = {1, . . . , n} are such

that I1 ∪ I2 = I and I1 ∩ I2 = ∅. Using the above fact and Lemma 3.10 one proves that for

all κ ∈ (0, 1] and all list of indices J the following bound

∥w̃m(J),β
µ (Kn(J),m(J)

ε;µ ∗ ∂µEJ
ε,τ ;µ)∥Vm

ε,τ;t
≲ µϱκ(J)+(σ+d)(n(J)−1)−1 (5.4)

holds uniformly in ε ∈ A, τ ∈ N+ if the statement of Theorem 5.6 holds true for all lists of

indices I such that i(J) < i(I), or i(J) = i(I) and m(J) > m(I).

5.3 Uniform bounds for cumulants

In this section we present main ideas of the proof of Theorem 5.6. The proof is by induction

on i(I) and m(I). Since ϱκ(I) is decreasing function of κ ∈ (0, 1] for list of indices I such

that EI
ε,τ ;η ̸= 0, without loss of generality we can assume that κ ∈ (0, κ⋆] for some κ⋆ ∈ (0, 1]

to be fixed later. Moreover, let us observe that the bound (5.2) is trivially satisfied for all

list of indices I such that m(I) > 3i(I) since then EI
ε,τ ;µ = 0.

Let us study first the case i(I) = 0. In this case the cumulants EI
ε,τ,µ coincide with the

cumulants of the white noise ξε,τ . Hence, the only non-vanishing cumulant is the covariance

corresponding to n(I) = 2, m(I) = (0, 0) and the bound (5.2) is equivalent to

∥E(ξε,τ , ξε,τ )∥Vm
ε,τ;t

≤ sup
z1∈Λε,τ

∫
Λε,τ

|E(ξε,τ (z1)ξε,τ (dz2))| = 1.

This proves the base case of the induction.
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Now let us fix i ∈ N+, m ∈ N0 and assume that the theorem is true for all lists of indices

I such that i(I) < i, or i(I) = i and m(I) > m. Our goal is to prove the theorem for all I

such that i(I) = i and m(I) = m. We are going to study separately the following two cases:

(1) irrelevant cumulants EI
ε,τ ;µ with I such that ϱ(I) + (σ + d)(n(I)− 1) > 0,

(2) relevant cumulants EI
ε,τ ;µ with I such that ϱ(I) + (σ + d)(n(I)− 1) ≤ 0.

We start with the case (1). First, note that there exists κ⋆ ∈ (0, 1] such that the condition

ϱ(I) + (σ + d)(n(I) − 1) > 0 implies that ϱκ(I) + (σ + d)(n(I) − 1) > 0 for all κ ∈ (0, κ⋆]

and lists of indices I for which EI
ε,τ ;η ̸= 0. Next, observe that

∥w̃m(I),β
µ (Kn(I),m(I)

ε;µ ∗ EI
ε,τ ;µ)∥Vm

ε,τ;t
≲
∫ µ

0

∥w̃m(I),β
µ (Kn(I),m(I)

ε;µ ∗ ∂ηEI
ε,τ ;η)∥Vm

ε,τ;t
dη

≲
∫ µ

0

∥w̃m(I),β
η (Kn(I),m(I)

ε;η ∗ ∂ηEI
ε,τ ;η)∥Vm

ε,τ;t
dη

≲
∫ µ

0

ηϱκ(I)+(σ+d)(n(I)−1)−1 ≲ µϱκ(I)+(σ+d)(n(I)−1).

The first of the above bounds follows from the Minkowski inequality. The second one is

a consequence of the properties of the kernel K
n(I),m(I)
ε;µ and the weight w̃

m(I),β
µ . To prove

the third bound we used the induction hypothesis and the bound (5.4). The last bound

relies crucially on the inequality ϱκ(I) + (σ+ d)(n(I)− 1) > 0. This proves the theorem for

irrelevant cumulants.

Let us proceed to the proof of the case (2). Note that for i(I) > 0 the condition

ϱ(I) + (σ + d)(n(I) − 1) ≤ 0 implies that n(I) = 1. Hence, I = (i,m) for i,m ∈ N0 such

that ϱ(i,m) ≤ 0 and

EI
ε,τ ;µ = EF i,m

ε,τ ;µ.

The condition ϱ(i,m) ≤ 0 implies that m ∈ {0, 1, 2, 3}. Using the fact that the law of

ξε,τ is invariant under the transformations ξε,τ 7→ −ξε,τ one shows that EI
ε,τ ;µ = 0 unless

n(I) +m(I) ∈ 2N0. As a result, we can restrict attention to the cases m = 3 and m = 1.

For m = 3 the condition ϱ(i, 3) ≤ 0 implies that i = 1 and

EI
ε,τ ;µ(z,dz1,dz2,dz2) = EF 1,3

ε,τ ;µ(z,dz1,dz2,dz2)

= EF 1,3
ε,τ ;0(z,dz1,dz2,dz2) = −δ(z)Λε

(dz1)δ
(z)
Λε

(dz2)δ
(z)
Λε

(dz3)

by Remark 3.25, where δ
(z)
Λε

∈ S ′(Λε) is the Dirac delta at z ∈ Λε. The proof of the

bound (5.2) follows now from elementary estimates. For m = 1 the condition ϱ(i, 1) ≤ 0 im-

plies that i ∈ {1, . . . , i♯}, where i♯ was introduced in Def. 3.19. We note that the bound (5.2)

in the case at hand takes the form

∥w̃1,β
η (K1,1

ε;µ ∗ EF i,1
ε,τ ;µ)∥V1

ε,τ;t
≲ µϱκ(i,1). (5.5)
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To prove the above bound we would like to take advantage of the bound

∥w̃1,β
η (K1,1

ε;η ∗ ∂ηEF i,1
ε,τ ;η)∥V1

ε,τ;t
≲ ηϱκ(i,1)−1, (5.6)

which is a consequence of the induction hypothesis and the bound (5.4). The problem is

that the RHS of the above bound is not integrable in η ∈ [0, 1] at η = 0. At this stage it is

useful to realize that

EI
ε,τ ;0(z,dz1) = EF i,1

ε,τ ;0(z,dz1) = r(i)ε,τ δ
(z)
Λε

(dz1), (5.7)

where r
(i)
ε,τ ∈ R is the mass counterterm that has not yet been fixed and can be chosen

arbitrarily. Now the idea is to use the following decomposition

EF i,1
ε,τ ;µ = Êi,1

ε,τ ;µ + Ẽi,1
ε,τ ;µ,

where the local part Êi,1
ε,τ ;µ is defined by

Êi,1
ε,τ ;µ(z,dz1) := r(i)ε,τ ;µ δ

(z)
Λε

(dz1), r(i)ε,τ ;µ :=

∫
Λε

EF i,1
ε,τ ;µ(z,dz1) ∈ R, (5.8)

and Ẽi,1
ε,τ ;µ is a certain non-local remainder. Observe that by translational invariance r

(i)
ε,τ ;µ

does not depend on z ∈ Λε. Using the Taylor theorem and the bound (5.6) one shows with

some effort that

∥w̃1,β
η (K1,1

ε;µ ∗ Ẽi,1
ε,τ ;µ)∥V1

ε,τ;t
≲ µϱκ(i,1).

It remains to estimate the local part. By the second of Eqs. (5.8) and the bound (5.6) we

have

|∂ηr(i)ε,τ ;η| ≲ ηϱκ(i,1)−1. (5.9)

We fix the counterterm r
(i)
ε,τ ∈ R in Eq. (5.7) by the implicit condition r

(i)
ε,τ ;µ=1 = 0, which

implies that

r(i)ε,τ := −
∫ 1

0

∂ηr
(i)
ε,τ ;η dη, r(i)ε,τ ;µ := −

∫ 1

µ

∂ηr
(i)
ε,τ ;η dη.

Using the second of the above identities, the bound (5.9) and ϱκ(i, 1) < 0 we obtain

|r(i)ε,τ ;µ| ≲ µϱκ(i,1).

It follows that

∥w̃1,β
η (K1,1

ε;µ ∗ Êi,1
ε,τ ;µ)∥V1

ε,τ;t
≲ µϱκ(i,1).

This proves the bound (5.5) and finishes the proof of the inductive step.
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